To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let q be a natural number. When the multiplicative iroup (ℤ/qℤ)* is a cyclic group, its generators are called primitive roots. Note that the generators are also elements with the maximum order if (ℤ/qℤ)* is cyclic. Thus, when (ℤ–qℤ)* is not a cyclic goup, we then call an element with: he maximal possible order a primitive root, which was initially introduced by R. Carmichael [1].
Many generalizations of continued fractions, where the reciprocal function has been replaced by a more general function, have been studied, and it is often asked whether such generalized expansions can have nice properties. For instance, we might ask that algebraic numbers of a given degree have periodic expansions, just as quadratic irrationals have periodic continued fractions; or we might ask that familiar transcendental constants such as e or π have periodic or terminating expansions. In this paper, we show that there exist such generalized continued function expansions with essentially any desired behaviour.
Let A⊆ℕ, let p be a prime and w a word over ℤ pℤ ending with a non-zero digit. The relationship is investigated between the density of A. the length of w and the density of the set of numbers n for which the base p expansion of ends with w0n for some a ∈ A. Also considered is the analogous problem on Pascal's triangle. This leads in particular to answering a question of Granville and Zhu [7] regarding the asymptotic frequency of sums of 3 squares in Pascal's triangle.
In this paper we show that if f (X) ∈; Z [X ] is a nonzero polynomial, then ω(n)/f(n) holds only on a set of n of asymptotic density zero, where for a positive integer n the number ω(n) counts the number of distinct prime factors ofn.
We prove a new formula for the number of integral points on an elliptic curve over a function field without assuming that the coefficient field is algebraically closed. This is an improvement on the standard results of Hindry-Silverman.
An asymptotic formula is established for the number of representations of a large integer as the sum of kth powers of natural numbers, in which each representation is counted with a homogeneous weight that de-emphasises the large solutions. Such an asymptotic formula necessarily fails when this weight is excessively light.
We give a detailed exposition of the theory of decompositions of linearised polynomials, using a well-known connection with skew-polynomial rings with zero derivative. It is known that there is a one-to-one correspondence between decompositions of linearised polynomials and sub-linearised polynomials. This correspondence leads to a formula for the number of indecomposable sub-linearised polynomials of given degree over a finite field. We also show how to extend existing factorisation algorithms over skew-polynomial rings to decompose sub-linearised polynomials without asymptotic cost.
§1. Introduction, By a remarkable result of Erdos and Selfridge [3] in 1975. the diophantine equation
with integers k≥2 and m≥2, has only the trivial solutions. x = −j(j = i, …, m), y = 0. This put an end to the old question whether the product of consecutive positive integers could ever be a perfect power; for a brief account of its history see [7].
Let L/K be an extension of number fields and let be the subgroup of the unit group consisting of the elements that are roots of units of . Denote by (L/K, B) the number of points in with relative height in the sense of Bergé-Martinet at most B. Here ℙ1(L) stands for the one-dimensional projective space over L. In this paper is proved the formula (L/K, B) = CB2 + O(B2−1/[L:Q]), where C is a constant given in terms of invariants of L/K such as the regulators, class number and discriminant.
Let N(ρ; ω) be the number of points of a d-dimensional lattice Γ. where d≥2, inside a ball of radius ρ centred at the point ω. Denote by (ρ) the number N(ρ; ω) averaged over ω in the elementary cell Ω of the lattice Γ. The main result is the following lower bound for for dimensions d ≅ l(mod 4):
The higher Lie characters of the symmetric group Sn arise from the Poincaré-Birkhoff-Witt basis of the free associative algebra. They are indexed by the partitions of n and sum up to the regular character of Sn. A combinatorial description of the multiplicities of their irreducible components is given. As a special case the Kraśkiewicz-Weyman result on the multiplicities of the classical Lie character is obtained.
For any positive integer q≧2, let Fq be a finite field with q elements, Fq ((z-1)) be the field of all formal Laurent series in an inderminate z, I denote the valuation ideal z-1Fq [[z-1]] in the ring of formal power series Fq ((z-1)) normalized by P(l) = 1. For any x ∈ I, let the series be the Engel expansin of Laurent series of x. Grabner and Knopfmacher have shown that the P-measure of the set A(α) = {x ∞ I: limn→∞ deg an(x)/n = ά} is l when α = q/(q -l), where deg an(x) is the degree of polynomial an(x). In this paper, we prove that for any α ≧ l, A(α) has Hausdorff dimension l. Among other thing we also show that for any integer m, the following set B(m) = {x ∈ l: deg an+1(x) - deg an(x) = m for any n ≧ l} has Hausdorff dimension 1.
Let M be a commutative cancellative atomic monoid. We consider the behaviour of the asymptotic length functions and on M. If M is finitely generated and reduced, then we present an algorithm for the computation of both and where x is a nonidentity element of M. We also explore the values that the functions and can attain when M is a Krull monoid with torsion divisor class group, and extend a well-known result of Zaks and Skula by showing how these values can be used to characterize when M is half-factorial.
One way of realizing representations of the Heisenberg group is by using Fock representations, whose representation spaces are Hilbert spaces of functions on complex vector space with inner products associated to points on a Siegel upper half space. We generalize such Fock representations using inner products associated to points on a Hermitian symmetric domain that is mapped into a Seigel upper half space by an equivariant holomorphic map. The representations of the Heisenberg group are then given by an automorphy factor associated to a Kuga fiber variety. We introduce theta functions associated to an equivariant holomorphic map and study connections between such generalized theta functions and Fock representations described above. Furthermore, we discuss Jacobi forms on Hermitian symmetric domains in connection with twisted torus bundles over symmetric spaces.
We exhibit a canonical geometric pairing of the simple closed curves of the degree three cover of the modular surface, Γ3\ℋ, with the proper single self-intersecting geodesics of Crisp and Moran. This leads to a pairing of fundamental domains for Γ3 with Markoff triples.
The routes of the simple closed geodesics are directly related to the above. We give two parametrizations of these. Combining with work of Cohn, we achieve a listing of all simple closed geodesics of length within any bounded interval. Our method is direct, avoiding the determination of geodesic lengths below the chosen lower bound.
Existence criteria are presented for non-linear boundary value problems on the half line. In particular, the theory includes a problem in the theory of colloids and a problem arising in the unsteady flow of a gas through a semi-infinite porous medium.
A positive definite integral quadratic form over rational integers is said to be universal, if it represents all positive integers. The universal quaternary quadratic form is determined with the maximal discriminant, which is 1073/4.
An algorithm is developed for exact simulation from distributions that are defined as fixed points of maps between spaces of probability measures. The fixed points of the class of maps under consideration include examples of limit distributions of random variables studied in the probabilistic analysis of algorithms. Approximating sequences for the densities of the fixed points with explicit error bounds are constructed. The sampling algorithm relies on a modified rejection method.