To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Suppose that G is an abelian group and that A ⊂ G is finite and contains no non-trivial three-term arithmetic progressions. We show that |A+A| »ε|A|(log|A|)⅓−ε.
A problem posed in the early eighteenth century asks for right-angled triangles, each of whose sides exceeds double the area by a perfect square. We summarize known results and find such triangles with the smallest possible standard generators.
Let $p$ be a prime, and let $f:\mathbb{Z}/p\mathbb{Z}\to \mathbb{R}$ be a function with $\mathbb{E}f=0$ and $||\hat{f}|{{|}_{1}}\le 1$. Then ${{\min }_{x\in \mathbb{Z}/p\mathbb{Z}}}|f\left( x \right)|=O{{\left( \log p \right)}^{-1/3+\in }}$. One should think of $f$ as being “approximately continuous”; our result is then an “approximate intermediate value theorem”.
As an immediate consequence we show that if $A\subseteq \mathbb{Z}/p\mathbb{Z}$ is a set of cardinality $\left\lfloor {p}/{2}\; \right\rfloor $, then ${{\sum }_{r}}\widehat{|\,{{1}_{A}}}\left( r \right)|\gg {{\left( \log p \right)}^{1/3-\in }}$. This gives a result on a “$\,\bmod \,p$” analogue of Littlewood's well-known problem concerning the smallest possible ${{L}^{1}}$-norm of the Fourier transform of a set of $n$ integers.
Another application is to answer a question of Gowers. If $A\,\subseteq \,{\mathbb{Z}}/{p\mathbb{Z}}\;$ is a set of size $\left\lfloor {p}/{2}\; \right\rfloor $, then there is some $x\,\in \,\mathbb{Z}/p\mathbb{Z}$ such that
$$||A\cap \left( A+x \right)\,-\,p/4|\,=o\left( p \right).$$
We prove quantitative versions of the Balog–Szemerédi–Gowers and Freiman theorems in the model case of a finite field geometry 𝔽2n, improving the previously known bounds in such theorems. For instance, if is such that ∣A+A∣≤K∣A∣ (thus A has small additive doubling), we show that there exists an affine subspace H of 𝔽2n of cardinality such that . Under the assumption that A contains at least ∣A∣3/K quadruples with a1+a2+a3+a4=0, we obtain a similar result, albeit with the slightly weaker condition ∣H∣≫K−O(K)∣A∣.
We prove the modularity of minimally ramified ordinary residually reducible p-adic Galois representations of an imaginary quadratic field F under certain assumptions. We first exhibit conditions under which the residual representation is unique up to isomorphism. Then we prove the existence of deformations arising from cuspforms on GL2(AF) via the Galois representations constructed by Taylor et al. We establish a sufficient condition (in terms of the non-existence of certain field extensions which in many cases can be reduced to a condition on an L-value) for the universal deformation ring to be a discrete valuation ring and in that case we prove an R=T theorem. We also study reducible deformations and show that no minimal characteristic 0 reducible deformation exists.
In this article, we explore a beautiful idea of Skinner and Wiles in the context of GSp(4) over a totally real field. The main result provides congruences between automorphic forms which are Iwahori-spherical at a certain place ω, and forms with a tamely ramified principal series at ω, Thus, after base change to a finite solvable totally real extension, one can often lower the level at ω. For the proof, we first establish an analogue of the Jacquet–Langlands correspondence, using the stable trace formula. The congruences are then obtained on inner forms, which are compact at infinity modulo the centre, and split at all the finite places. The crucial ingredient allowing us to do so, is an important result of Roche on types for principal series representations of split reductive groups.
We associate two almost Cp-representations to a (ϕ,Γ)-module, and we compute their dimensions and heights. As a corollary, we get a full faithfulness result for Be-representations.
In this paper we consider the dynamical system involved by the Ricci operator on the space of Kähler metrics of a Fano manifold. Nadel has defined an iteration scheme given by the Ricci operator and asked whether it has some non-trivial periodic points. First, we prove that no such periodic points can exist. We define the inverse of the Ricci operator and consider the dynamical behaviour of its iterates for a Fano Kähler–Einstein manifold. Then we define a finite-dimensional procedure to give an approximation of Kähler–Einstein metrics using this iterative procedure and apply it on ℂℙ2 blown up in three points.
We propose a geometric method to measure the wild ramification of a smooth étale sheaf along the boundary. Using the method, we study the graded quotients of the logarithmic ramification groups of a local field of characteristic p > 0 with arbitrary residue field. We also define the characteristic cycle of an ℓ-adic sheaf, satisfying certain conditions, as a cycle on the logarithmic cotangent bundle and prove that the intersection with the 0-section computes the characteristic class, and hence the Euler number.
Let k be an algebraically closed field of characteristic greater than 2, and let F=k((t)) and G=𝕊p2d. In this paper we propose a geometric analog of the Weil representation of the metaplectic group . This is a category of certain perverse sheaves on some stack, on which acts by functors. This construction will be used by Lysenko (in [Geometric theta-lifting for the dual pair S𝕆2m, 𝕊p2n, math.RT/0701170] and subsequent publications) for the proof of the geometric Langlands functoriality for some dual reductive pairs.
Given a compact p-adic Lie group G over a finite unramified extension L/ℚp let GL/ℚp be the product over all Galois conjugates of G. We construct an exact and faithful functor from admissible G-Banach space representations to admissible locally L-analytic GL/ℚp-representations that coincides with passage to analytic vectors in the case L=ℚp. On the other hand, we study the functor ‘passage to analytic vectors’ and its derived functors over general basefields. As an application we compute the higher analytic vectors in certain locally analytic induced representations.
Using a p-adic analogue of the convolution method of Rankin–Selberg and Shimura, we construct the two-variable p-adic L-function of a Hida family of Hilbert modular eigenforms of parallel weight. It is shown that the conditions of Greenberg–Stevens [R. Greenberg and G. Stevens, p-adic L-functions and p-adic periods of modular forms, Invent. Math. 111 (1993), 407–447] are satisfied, from which we deduce special cases of the Mazur–Tate–Teitelbaum conjecture in the Hilbert modular setting.
Erdős and Odlyzko proved that odd integers k such that k2n+1 is prime for some positive integer n have a positive lower density. In this paper, we characterize all arithmetic progressions in which natural numbers that can be expressed in the form (p−1)2−n (where p is a prime number) have a positive proportion. We also prove that an arithmetic progression consisting of odd numbers can be obtained from a covering system if and only if those integers in such a progression which can be expressed in the form (p−1)2−n have an asymptotic density of zero.
Given two sets of elements of the finite field 𝔽q of q elements, we show that the product set contains an arithmetic progression of length k≥3 provided that k<p, where p is the characteristic of 𝔽q, and #𝒜#ℬ≥3q2d−2/k. We also consider geometric progressions in a shifted product set 𝒜ℬ+h, for f∈𝔽q, and obtain a similar result.
The chain complexes underlying Floer homology theories typically carry a real-valued filtration, allowing one to associate to each Floer homology class a spectral number defined as the infimum of the filtration levels of chains representing that class. These spectral numbers have been studied extensively in the case of Hamiltonian Floer homology by Oh, Schwarz and others. We prove that the spectral number associated to any nonzero Floer homology class is always finite, and that the infimum in the definition of the spectral number is always attained. In the Hamiltonian case, this implies that what is known as the ‘nondegenerate spectrality’ axiom holds on all closed symplectic manifolds. Our proofs are entirely algebraic and apply to any Floer-type theory (including Novikov homology) satisfying certain standard formal properties. The key ingredient is a theorem about the existence of best approximations of arbitrary elements of finitely generated free modules over Novikov rings by elements of prescribed submodules with respect to a certain family of non-Archimedean metrics.
We revisit recent work of Heath-Brown on the average order of the quantity r(L1(x))⋯r(L4(x)), for suitable binary linear forms L1,…,L4, as x=(x1,x2) ranges over quite general regions in ℤ2. In addition to improving the error term in Heath-Brown’s estimate, we generalise his result to cover a wider class of linear forms.
We study a function field analog of Chebyshev’s bias. Our results, as well as their proofs, are similar to those of Rubinstein and Sarnak in the case of the rational number field. Following Rubinstein and Sarnak, we introduce the grand simplicity hypothesis (GSH), a certain hypothesis on the inverse zeros of Dirichlet L-series of a polynomial ring over a finite field. Under this hypothesis, we investigate how primes, that is, irreducible monic polynomials in a polynomial ring over a finite field, are distributed in a given set of residue classes modulo a fixed monic polynomial. In particular, we prove under the GSH that, like the number field case, primes are biased toward quadratic nonresidues. Unlike the number field case, the GSH can be proved to hold in some cases and can be violated in some other cases. Also, under the GSH, we give the necessary and sufficient conditions for which primes are unbiased and describe certain central limit behaviors as the degree of modulus under consideration tends to infinity, all of which have been established in the number field case by Rubinstein and Sarnak.
We obtain second integral moments of automorphic L-functions on adele groups GL2 over arbitrary number fields, by a spectral decomposition using the structure and representation theory of adele groups GL1 and GL2. This requires reformulation of the notion of Poincaré series, replacing the collection of classical Poincaré series over GL2(ℚ) or GL2(ℚ(i)) with a single, coherent, global object that makes sense over a number field. This is the first expression of integral moments in adele-group terms, distinguishing global and local issues, and allowing uniform application to number fields. When specialized to the field of rational numbers ℚ, we recover the classical results on moments.
We study sums involving multiplicative functions that take values over a nonhomogenous Beatty sequence. We then apply our result in a few special cases to obtain asymptotic formulas for quantities such as the number of integers in a Beatty sequence that are representable as a sum of two squares up to a given magnitude.
We derive bivariate polynomial formulae for cocycles and coboundaries in Z2(ℤpn,ℤpn), and a basis for the (pn−1−n)-dimensional GF(pn)-space of coboundaries. When p=2 we determine a basis for the -dimensional GF(2n)-space of cocycles and show that each cocycle has a unique decomposition as a direct sum of a coboundary and a multiplicative cocycle of restricted form.