We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
§1. Introduction. Most prominent among the classical problems in additive number theory are those of Waring and Goldbach type. Although use of the Hardy–Littlewood method has brought admirable progress, the finer questions associated with such problems have yet to find satisfactory solutions. For example, while the ternary Goldbach problem was solved by Vinogradov as early as 1937 (see Vinogradov [16], [17]), the latter's methods permit one to establish merely that almost all even integers are the sum of two primes (see Chudakov [4], van der Corput [5] and Estermann [7]).
The space of integral 3-tensors is under the standard action of . A notion of primitivity is defined in this space and the number of primitive classes of a given discriminant is evaluated in terms of the class number of primitive binary quadratic forms of the same discriminant. Classes containing symmetric 3-tensors are also considered and their number is related to the 3-rank of the class group.
We prove here that the p - 1 first derivatives of the fundamental period of the Carliz module are algebraically independent. For that purpose we will show to use Mahler's method in this situtaion.
We study a correspondence between automorphic forms on an orthogonal group and automorpbic forms on a semi-simple Lie group associated to an equivariant holomorphic map of a symmetric domain into a Siegel upper half space. We construct an automorphic form on the symmetric domain thatg corresponds to an automorphic form on an orthogonal group using theta series, and prove that such a correspondence is compatible with the appropriate Hecks operator actions on the corresponding automorphic forms. As an example, we describe the case of spin groups.
It is well known that, if p is prime, the multiplicative group (ℤ/pℤ)* of reduced residues is cyclic. A generator is called a primitive root; there are φ(p − 1) of them, where φ is Euler's function. Thus, (φ(p − 1)/(p−1) is the proportion of primitive roots modulo p in (ℤ/pℤ)*. Elliott has proved that φp − 1)/(p − 1) has a limiting distribution function [2], in the sense that
Assuming the abc-conjecture, it is shown that there are only finitely many powerful binomial coefficients with 3≤k≤n/2 in fact, if q2 divides , then . Unconditionally, it is shown that there are N1/2+σ(1) powerful binomial coefficients in the top N rows of Pascal's Triangle.
Let φ(n) be the Euler function (i.e., φ(n) denotes the number of integers less than n which are relatively prime to n), and define
These functions were extensively studied by several mathematicians. One of the problems investigated concerns their sign changes. We say that a function fx) has a sign change at x = x0 if f(x0 −) f(x0 +) < 0, and f(x) has a sign change on the integer n if (n)f(n+1) < 0. The numbers of sign changes and sign changes on integers of f(x) in the interval [1, T] are denoted by Xf(T) and Nf(T), respectively.
We are interested in the distribution of those zeros of the Riemann zeta-function which lie on the critical line ℜs = ½, and the maxima of the function between successive zeros. Our results are to be independent of any unproved hypothesis. Put
A new version of Erdös-Turán's inequality is described. The purpose of the present paper is to show that the inequality provides better upper bounds for the discrepancies of some sequences than usual Erdös-Turán's inequality.
Investigations concerning the gaps between consecutive prime numbers have long occupied an important position on the interface between additive and multiplicative number theory. Perhaps the most famous problem concerning these gaps, the Twin Prime Conjecture, asserts that the aforementioned gaps are infinitely often as small as 2. Although a proof of this conjecture seems presently far beyond our reach (but see [5] and [10] for related results), weak evidence in its favour comes from studying unusually short gaps between prime numbers. Thus, while it follows from the Prime Number Theorem that the average gap between consecutive primes of size about x is around log x, it is now known that such gaps can be infinitely often smaller than 0–249 log x (this is a celebrated result of Maier [12], building on earlier work of a number of authors; see in particular [7], [13], [3] and [11]). A conjecture weaker than the Twin Prime Conjecture asserts that there are infinitely many gaps between prime numbers which are powers of 2, but unfortunately this conjecture also seems well beyond our grasp. Extending this line of thought, Kent D. Boklan has posed the problem of establishing that the gaps between prime numbers infinitely often have only small prime divisors, and here the latter divisors should be small relative to the size of the small gaps established by Maier [12]. In this paper we show that the gaps between consecutive prime numbers infinitely often have only small prime divisors, thereby solving Boklan's problem. It transpires that the methods which we develop to treat Boklan's problem are capable also of detecting multiplicative properties of more general type in the differences between consecutive primes, and this theme we also explore herein.
Let Tβ be the β-transformation on [0, 1). When β is an integer Tβ is ergodic with respect to Lebesgue measure and almost all orbits {} are uniformly distributed. Here we consider the non-integer case, determine when Tα, Tβ have the same invariant measure and when (appropriately normalised) orbits are uniformly distributed.
for a suitable Dirichlet character χ mod r, and real functionf(x). The proofs in that paper use Bombieri and Iwaniec's method [1], one formulation of which has as part of its first step the estimation of S in terms of a sum of many shorter sums of the form,
where e(x) = exp (2πix), mi∈ [M, 2M], and each mi, lies in its own interval, of length N ≥ M/4, that is disjoint from those of the others. This paper addresses a problem springing from above: to bound the numbers of ‘similar’ pairs, Si+, Si+, satisfying both
and
where ‖x‖ = min{|x − n|: n ∈ ℤ}. Lemma 5.2.1 of [3] (partial summation) shows that each sum in a similar pair is a bounded multiple of the other.
A general analytic scheme for Poisson approximation to discrete distributions is studied in which the asymptotic behaviours of the generalized total variation, Fortet-Mourier (or Wasserstein), Kolmogorov and Matusita (or Hellinger) distances are explicitly characterized. Applications of this result include many number-theoretic functions and combinatorial structures. Our approach differs from most of the existing ones in the literature and is easily amended for other discrete approximations; arithmetic and combinatorial examples for Bessel approximation are also presented. A unified approach is developed for deriving uniform estimates for probability generating functions of the number of components in general decomposable combinatorial structures, with or without analytic continuation outside their circles of convergence.
Let p(n) be the usual partition function. Let l be an odd prime, and let r (mod t) be any arithmetic progression. If there exists an integer n ≡ r (mod t) such that p(n) ≢ 0 (mod l), then, for large X,
For a point set in the multidimensional unit torus we introduce an Lk-measure of uniformity of distribution, which for k=2 reduces to diaphony (and thus in this case essentially coincides with Weyl L2-discrepancy). For k ∈ [1, 2] we establish a sharp asymptotic for this new measure as the number of points of the set tends to infinity. Upper and lower-bound estimates are given also for k >2.