To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For a numerical semigroup S, a positive integer a and anonzero element m of S, we define a new numerical semigroup R(S,a,m) and call it the (a,m)-rotation of S. In this paper we study the Frobenius number and the singularity degree of R(S,a,m). Moreover, we observe that the rotations of ℕ are precisely the modular numerical semigroups.
Weprove an observation associated with η3(τ)η3(7τ) whichis found on page 54 of Ramanujan’s Lost Notebook (S. Ramanujan, The Lost Notebook and Other Unpublished Papers (Narosa, New Delhi, 1988)). We then study functions of the type η3(aτ)η3(bτ) with a+b=8.
We establish various properties of the definition of cohomology of topological groups given by Grothendieck, Artin and Verdier in SGA4, including a Hochschild–Serre spectral sequence and a continuity theorem for compact groups. We use these properties to compute the cohomology of the Weil group of a totally imaginary field, and of the Weil-étale topology of a number ring recently introduced by Lichtenbaum (both with integer coefficients).
Let K be an arbitrary number field, and let ρ : Gal(/K) → GL2(E) be a nearly ordinary irreducible geometric Galois representation. In this paper, we study the nearly ordinary deformations of ρ. When K is totally real and ρ is modular, results of Hida imply that the nearly ordinary deformation space associated to ρ contains a Zariski dense set of points corresponding to ‘automorphic’ Galois representations. We conjecture that if K is not totally real, then this is never the case, except in three exceptional cases, corresponding to: (1) ‘base change’, (2) ‘CM’ forms, and (3) ‘even’ representations. The latter case conjecturally can only occur if the image of ρ is finite. Our results come in two flavours. First, we prove a general result for Artin representations, conditional on a strengthening of the Leopoldt Conjecture. Second, when K is an imaginary quadratic field, we prove an unconditional result that implies the existence of ‘many’ positive-dimensional components (of certain deformation spaces) that do not contain infinitely many classical points. Also included are some speculative remarks about ‘p-adic functoriality’, as well as some remarks on how our methods should apply to n-dimensional representations of Gal(/ℚ) when n > 2.
Following T. H. Chan, we consider the problem of approximation of a given rational fraction a/q by sums of several rational fractions a1/q1,…,an/qn with smaller denominators. We show that in the special cases of n=3 and n=4 and certain admissible ranges for the denominators q1,…,qn, one can improve a result of T. H. Chan by using a different approach.
Let X be a smooth projective curve. We consider the dual reductive pair , over X, where H splits on an étale two-sheeted covering . Let BunG (respectively, BunH) be the stack of G-torsors (respectively, H-torsors) on X. We study the functors FG and FH between the derived categories D(BunG) and D(BunH), which are analogs of the classical theta-lifting operators in the framework of the geometric Langlands program. Assume n=m=1 and H nonsplit, that is, with connected. We establish the geometric Langlands functoriality for this pair. Namely, we show that FG :D(BunH)→D(BunG)commutes with Hecke operators with respect to the corresponding map of Langlands L-groups LH→LG. As an application, we calculate Waldspurger periods of cuspidal automorphic sheaves on BunGL2 and Bessel periods of theta-lifts from to . Based on these calculations, we give three conjectural constructions of certain automorphic sheaves on (one of them makes sense for -modules only).
We prove a dynamical version of the Mordell–Lang conjecture in the context of Drinfeld modules. We use analytic methods similar to those employed by Skolem, Chabauty, and Coleman for studying diophantine equations.
Given a curve of genus 3 with an unramified double cover, we give an explicit description of the associated Prym variety. We also describe how an unramified double cover of a non-hyperelliptic genus 3 curve can be mapped into the Jacobian of a curve of genus 2 over its field of definition and how this can be used to perform Chabauty- and Brauer–Manin-type calculations for curves of genus 5 with an fixed-point-free involution. As an application, we determine the rational points on a smooth plane quartic and give examples of curves of genus 3 and 5 violating the Hasse principle. The methods are, in principle, applicable to any genus 3 curve with a double cover. We also show how these constructions can be used to design smooth plane quartics with specific arithmetic properties. As an example, we give a smooth plane quartic with all 28 bitangents defined over . By specialization, this also gives examples over .
We consider logarithmic averages, over friable integers, of non-negative multiplicative functions. Under logarithmic, one-sided or two-sided hypotheses, we obtain sharp estimates that improve upon known results in the literature regarding both the quality of the error term and the range of validity. The one-sided hypotheses correspond to classical sieve assumptions. They are applied to provide an effective form of the Johnsen–Selberg prime power sieve.
We develop and study the epsilon factor of a ‘local system’ of p-adic coefficients over the spectrum of a complete discrete valuation field K with finite residue field of characteristic p>0. In the equal characteristic case, we define the epsilon factor of an overconvergent F-isocrystal over Spec(K), using the p-adic monodromy theorem. We conjecture a global formula, the p-adic product formula, analogous to Deligne’s formula for étale ℓ-adic sheaves proved by Laumon, which explains the importance of this local invariant. Namely, for an overconvergent F-isocrystal over an open subset of a projective smooth curve X, the constant of the functional equation of the L-series is expressed as a product of the local epsilon factors at the points of X. We prove the conjecture for rank-one overconvergent F-isocrystals and for finite unit-root overconvergent F-isocrystals. In the mixed characteristic case, we study the behavior of the epsilon factor by deformation to the field of norms.
Let σA(n)=∣{(a,a′)∈A2:a+a′=n}∣, where and A is a subset of . Erdös and Turán conjectured that, for any basis A of , σA(n) is unbounded. In 1990, Ruzsa constructed a basis for which σA(n) is bounded in the square mean. In this paper, based on Ruzsa’s method, we show that there exists a basis A of satisfying for large enough N.
Sikora has given results which confirm the analogy between number fields and 3-manifolds. However, he has given proofs of his results which are very different in the arithmetic and in the topological case. In this paper, we show how to provide a unified approach to the results in the two cases. For this we introduce an equivariant cohomology which satisfies a localization theorem. In particular, we obtain a satisfactory explanation for the coincidences between Sikora’s formulas which leads us to clarify and to extend the dictionary of arithmetic topology.
In this article, a discrete mean value of the derivative of the Riemann zeta function is computed. This mean value will be important for several applications concerning the size of ζ′(ρ), where ζ(s) is the Riemann zeta function and ρ is a non-trivial zero of ζ(s).
Let X ⊂ ℙN be a geometrically integral cubic hypersurface defined over ℚ, with singular locus of dimension at most dim X − 4. The main result in this paper is a proof of the fact that X(ℚ) contains OɛX (BdimX + ɛ) points of height at most B.
A new lower bound is established for the distance between two roots of an integer polynomial, and a new upper bound for the distance between a given real number and the set of zeros of an integer polynomial. The latter result is applied to improve a metrical result in Diophantine approximation.
Let E be a level 1, vector valued Eisenstein series of half-integral weight, normalized so that the coefficients are all in ℤ. It is shown that there is a level one vector valued cusp form f with the same weight as E and with coefficients in ℤ, which is congruent to E modulo the constant term of E.
We study Rubin’s variant of the p-adic Birch and Swinnerton-Dyer conjecture for CM elliptic curves concerning certain special values of the Katz two-variable p-adic L-function that lie outside the range of p-adic interpolation.
We formulate an explicit conjecture for the leading term at s=1 of the equivariant Dedekind zeta-function that is associated to a Galois extension of number fields. We show that this conjecture refines well-known conjectures of Stark and Chinburg, and we use the functional equation of the zeta-function to compare it to a natural conjecture for the leading term at s=0.
We assume the validity of the equivariant Tamagawa number conjecture for a certain motive attached to an abelian extension K/k of number fields, and we calculate the Fitting ideal of the dual of clK− as a Galois module, under mild extra hypotheses on K/k. This builds on concepts and results of Tate, Burns, Ritter and Weiss. If k is the field of rational numbers, our results are unconditional.
Let E be a CM number field and let S be a finite set of primes of E containing the primes dividing a given prime number l and another prime u split above the maximal totally real subfield of E. If ES denotes a maximal algebraic extension of E which is unramified outside S, we show that the natural maps are injective. We discuss generalizations of this result.