To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
When p is a prime number, and k1,…,kt are natural numbers with 1≤k1<k2<⋯<kt<p, we show that the simultaneous congruences ∑ t1xkji≡∑ t1ykjimodp (1≤j≤t) possess at most k1⋯ktpt solutions with 1≤xi,yi≤p (1≤i≤t). Analogous conclusions are provided when one or more of the exponents ki is negative.
We prove the semisimplicity conjecture for A-motives over finitely generated fields K. This conjecture states that the rational Tate modules V𝔭(M) of a semisimple A-motive M are semisimple as representations of the absolute Galois group of K. This theorem is in analogy with known results for abelian varieties and Drinfeld modules, and has been sketched previously by Tamagawa. We deduce two consequences of the theorem for the algebraic monodromy groups G𝔭(M) associated to an A-motive M by Tannakian duality. The first requires no semisimplicity condition on M and states that G𝔭(M) may be identified naturally with the Zariski closure of the image of the absolute Galois group of K in the automorphism group of V𝔭(M). The second states that the connected component of G𝔭(M) is reductive if M is semisimple and has a separable endomorphism algebra.
Let ℓ be a prime number. It is not known whether every finite ℓ-group of rank n≥1 can be realized as a Galois group over with no more than n ramified primes. We prove that this can be done for the (minimal) family of finite ℓ-groups which contains all the cyclic groups of ℓ-power order and is closed under direct products, (regular) wreath products and rank-preserving homomorphic images. This family contains the Sylow ℓ-subgroups of the symmetric groups and of the classical groups over finite fields of characteristic not ℓ. On the other hand, it does not contain all finite ℓ-groups.
In this paper, we introduce cell-forms on 𝔐0,n, which are top-dimensional differential forms diverging along the boundary of exactly one cell (connected component) of the real moduli space 𝔐0,n(ℝ). We show that the cell-forms generate the top-dimensional cohomology group of 𝔐0,n, so that there is a natural duality between cells and cell-forms. In the heart of the paper, we determine an explicit basis for the subspace of differential forms which converge along a given cell X. The elements of this basis are called insertion forms; their integrals over X are real numbers, called cell-zeta values, which generate a ℚ-algebra called the cell-zeta algebra. By a result of F. Brown, the cell-zeta algebra is equal to the algebra of multizeta values. The cell-zeta values satisfy a family of simple quadratic relations coming from the geometry of moduli spaces, which leads to a natural definition of a formal version of the cell-zeta algebra, conjecturally isomorphic to the formal multizeta algebra defined by the much-studied double shuffle relations.
In a previous paper, the potential automorphy of certain Galois representations to GLn for n even was established, following the work of Harris, Shepherd–Barron and Taylor and using the lifting theorems of Clozel, Harris and Taylor. In this paper, we extend those results to n=3 and n=5, and conditionally to all other odd n. The key additional tools necessary are results which give the automorphy or potential automorphy of symmetric powers of elliptic curves, most notably those of Gelbert, Jacquet, Kim, Shahidi and Harris.
We discuss the problem of constructing elements of multiplicative high order in finite fields of large degree over their prime field. We obtain such elements by evaluating rational functions on elliptic curves, at points whose order is small with respect to their degree. We discuss several special cases, including an old construction of Wiedemann, giving the first nontrivial estimate for the order of the elements in this construction.
Let X be a projective cubic hypersurface of dimension 11 or more, which is defined over ℚ. We show that X(ℚ) is non-empty provided that the cubic form defining X can be written as the sum of two forms that share no common variables.
We generalise results of Buzzard, Taylor and Kassaei on analytic continuation of p-adic overconvergent eigenforms over ℚ to the case of p-adic overconvergent Hilbert eigenforms over totally real fields F, under the assumption that p splits completely in F. This includes weight-one forms and has applications to generalisations of Buzzard and Taylor’s main theorem. Next, we follow an idea of Kassaei’s to generalise Coleman’s well-known result that ‘an overconvergent Up-eigenform of small slope is classical’ to the case of p-adic overconvergent Hilbert eigenforms of Iwahori level.
Abstract. Let $H$ be the Hilbert class field of a $\text{CM}$ number field $K$ with maximal totally real subfield $F$ of degree $n$ over $\mathbb{Q}$. We evaluate the second term in the Taylor expansion at $s\,=\,0$ of the Galois-equivariant $L$-function ${{\Theta }_{{{S}_{\infty }}\,}}\left( s \right)$ associated to the unramified abelian characters of $\text{Gal}\left( H/K \right)$. This is an identity in the group ring $\mathbb{C}\left[ \text{Gal}\left( H/K \right) \right]$ expressing $\Theta _{{{S}_{\infty }}}^{(n)}\,\left( 0 \right)$ as essentially a linear combination of logarithms of special values $\left\{ \Psi ({{z}_{\sigma }}) \right\}$, where $\Psi :\,{{\mathbb{H}}^{n}}\,\to \,\mathbb{R}$ is a Hilbert modular function for a congruence subgroup of $S{{L}_{2}}\left( {{\mathcal{O}}_{F}} \right)$ and $\left\{ {{z}_{\sigma }}\,:\,\sigma \,\in \,\text{Gal}\left( H/K \right) \right\}$ are $\text{CM}$ points on a universal Hilbert modular variety. We apply this result to express the relative class number ${{h}_{H}}/{{h}_{K}}$ as a rational multiple of the determinant of an $\left( {{h}_{K}}\,-\,1 \right)\,\times \,\left( {{h}_{K}}\,-\,1 \right)$ matrix of logarithms of ratios of special values $\Psi ({{z}_{\sigma }})$, thus giving rise to candidates for higher analogs of elliptic units. Finally, we obtain a product formula for $\Psi ({{z}_{\sigma }})$ in terms of exponentials of special values of $L$-functions.
We introduce a differential operator on quasimodular polynomials that corresponds to the derivative operator on quasimodular forms. We then prove that such a differential operator is compatible with a heat operator on Jacobi-like forms in certain cases. These results show in those cases that the derivative operator on quasimodular forms corresponds to a heat operator on Jacobi-like forms.
Following R. A. Rankin’s method, D. Zagier computed the nth Rankin–Cohen bracket of a modular form g of weight k1 with the Eisenstein series of weight k2, computed the inner product of this Rankin–Cohen bracket with a cusp form f of weight k=k1+k2+2n and showed that this inner product gives, up to a constant, the special value of the Rankin–Selberg convolution of f and g. This result was generalized to Jacobi forms of degree 1 by Y. Choie and W. Kohnen. In this paper, we generalize this result to Jacobi forms defined over ℋ×ℂ(g,1).
In Boyer [Monodromy of perverse sheaves on vanishing cycles on some Shimura varieties, Invent. Math. 177 (2009), 239–280 (in French)], a sheaf version of the monodromy-weight conjecture for some unitary Shimura varieties was proved by giving explicitly the monodromy filtration of the complex of vanishing cycles in terms of local systems introduced in Harris and Taylor [The geometry and cohomology of some simple Shimura varieties (Princeton University Press, Princeton, NJ, 2001)]. The main result of this paper is the cohomological version of the monodromy-weight conjecture for these Shimura varieties, which we prove by means of an explicit description of the groups of cohomology in terms of automorphic representations and the local Langlands correspondence.
We study the moduli spaces of polarised irreducible symplectic manifolds. By a comparison with locally symmetric varieties of orthogonal type of dimension 20, we show that the moduli space of polarised deformation K3[2] manifolds with polarisation of degree 2d and split type is of general type if d≥12.
We show that a system of r quadratic forms over a 𝔭-adic field in at least 4r+1 variables will have a non-trivial zero as soon as the cardinality of the residue field is large enough. In contrast, the Ax–Kochen theorem [J. Ax and S. Kochen, Diophantine problems over local fields. I, Amer. J. Math. 87 (1965), 605–630] requires the characteristic to be large in terms of the degree of the field over ℚp. The proofs use a 𝔭-adic minimization technique, together with counting arguments over the residue class field, based on considerations from algebraic geometry.
Let 〈𝒫〉⊂N be a multiplicative subsemigroup of the natural numbers N={1,2,3,…} generated by an arbitrary set 𝒫 of primes (finite or infinite). We give an elementary proof that the partial sums ∑ n∈〈𝒫〉:n≤x(μ(n))/n are bounded in magnitude by 1. With the aid of the prime number theorem, we also show that these sums converge to ∏ p∈𝒫(1−(1/p)) (the case where 𝒫 is all the primes is a well-known observation of Landau). Interestingly, this convergence holds even in the presence of nontrivial zeros and poles of the associated zeta function ζ𝒫(s)≔∏ p∈𝒫(1−(1/ps))−1 on the line {Re(s)=1}. As equivalent forms of the first inequality, we have ∣∑ n≤x:(n,P)=1(μ(n))/n∣≤1, ∣∑ n∣N:n≤x(μ(n))/n∣≤1, and ∣∑ n≤x(μ(mn))/n∣≤1 for all m,x,N,P≥1.
If a positive definite Hermitian lattice represents all positive integers, we call it universal. Several mathematicians, including the author, have between them found 25 universal binary Hermitian lattices. But their ad hoc proofs are complicated. We give simple and unified proofs of universality.
Let a, b, c, x and y be positive integers. In this paper we sharpen a result of Le by showing that the Diophantine equation has at most two positive integer solutions (m,n) satisfying min (m,n)>1.
Let E be an ordinary elliptic curve over a finite field q of q elements. We improve a bound on bilinear additive character sums over points on E, and obtain its analogue for bilinear multiplicative character sums. We apply these bounds to some variants of the sum-product problem on E.
If C is a curve of genus 2 defined over a field k and J is its Jacobian, then we can associate a hypersurface K in ℙ3 to J, called the Kummer surface of J. Flynn has made this construction explicit in the case when the characteristic of k is not 2 and C is given by a simplified equation. He has also given explicit versions of several maps defined on the Kummer surface and shown how to perform arithmetic on J using these maps. In this paper we generalize these results to the case of arbitrary characteristic.
In this paper we address the issue of existence of cusp forms by using an extension and refinement of a classic method involving (adelic) compactly supported Poincaré series. As a consequence of our adelic approach, we also deal with cusp forms for congruence subgroups.