To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Erdős and Odlyzko proved that odd integers k such that k2n+1 is prime for some positive integer n have a positive lower density. In this paper, we characterize all arithmetic progressions in which natural numbers that can be expressed in the form (p−1)2−n (where p is a prime number) have a positive proportion. We also prove that an arithmetic progression consisting of odd numbers can be obtained from a covering system if and only if those integers in such a progression which can be expressed in the form (p−1)2−n have an asymptotic density of zero.
Given two sets of elements of the finite field 𝔽q of q elements, we show that the product set contains an arithmetic progression of length k≥3 provided that k<p, where p is the characteristic of 𝔽q, and #𝒜#ℬ≥3q2d−2/k. We also consider geometric progressions in a shifted product set 𝒜ℬ+h, for f∈𝔽q, and obtain a similar result.
The chain complexes underlying Floer homology theories typically carry a real-valued filtration, allowing one to associate to each Floer homology class a spectral number defined as the infimum of the filtration levels of chains representing that class. These spectral numbers have been studied extensively in the case of Hamiltonian Floer homology by Oh, Schwarz and others. We prove that the spectral number associated to any nonzero Floer homology class is always finite, and that the infimum in the definition of the spectral number is always attained. In the Hamiltonian case, this implies that what is known as the ‘nondegenerate spectrality’ axiom holds on all closed symplectic manifolds. Our proofs are entirely algebraic and apply to any Floer-type theory (including Novikov homology) satisfying certain standard formal properties. The key ingredient is a theorem about the existence of best approximations of arbitrary elements of finitely generated free modules over Novikov rings by elements of prescribed submodules with respect to a certain family of non-Archimedean metrics.
We revisit recent work of Heath-Brown on the average order of the quantity r(L1(x))⋯r(L4(x)), for suitable binary linear forms L1,…,L4, as x=(x1,x2) ranges over quite general regions in ℤ2. In addition to improving the error term in Heath-Brown’s estimate, we generalise his result to cover a wider class of linear forms.
We study a function field analog of Chebyshev’s bias. Our results, as well as their proofs, are similar to those of Rubinstein and Sarnak in the case of the rational number field. Following Rubinstein and Sarnak, we introduce the grand simplicity hypothesis (GSH), a certain hypothesis on the inverse zeros of Dirichlet L-series of a polynomial ring over a finite field. Under this hypothesis, we investigate how primes, that is, irreducible monic polynomials in a polynomial ring over a finite field, are distributed in a given set of residue classes modulo a fixed monic polynomial. In particular, we prove under the GSH that, like the number field case, primes are biased toward quadratic nonresidues. Unlike the number field case, the GSH can be proved to hold in some cases and can be violated in some other cases. Also, under the GSH, we give the necessary and sufficient conditions for which primes are unbiased and describe certain central limit behaviors as the degree of modulus under consideration tends to infinity, all of which have been established in the number field case by Rubinstein and Sarnak.
We obtain second integral moments of automorphic L-functions on adele groups GL2 over arbitrary number fields, by a spectral decomposition using the structure and representation theory of adele groups GL1 and GL2. This requires reformulation of the notion of Poincaré series, replacing the collection of classical Poincaré series over GL2(ℚ) or GL2(ℚ(i)) with a single, coherent, global object that makes sense over a number field. This is the first expression of integral moments in adele-group terms, distinguishing global and local issues, and allowing uniform application to number fields. When specialized to the field of rational numbers ℚ, we recover the classical results on moments.
We study sums involving multiplicative functions that take values over a nonhomogenous Beatty sequence. We then apply our result in a few special cases to obtain asymptotic formulas for quantities such as the number of integers in a Beatty sequence that are representable as a sum of two squares up to a given magnitude.
We derive bivariate polynomial formulae for cocycles and coboundaries in Z2(ℤpn,ℤpn), and a basis for the (pn−1−n)-dimensional GF(pn)-space of coboundaries. When p=2 we determine a basis for the -dimensional GF(2n)-space of cocycles and show that each cocycle has a unique decomposition as a direct sum of a coboundary and a multiplicative cocycle of restricted form.
The eta invariant of the Dirac operator over a non-compact cofinite quotient of PSL(2,ℝ) is defined through a regularized trace following Melrose. It reduces to the standard definition in terms of eigenvalues in the case of a totally non-trivial spin structure. When the S1-fibers are rescaled, the metric becomes of non-exact fibered-cusp type near the ends. We completely describe the continuous spectrum of the Dirac operator with respect to the rescaled metric and its dependence on the spin structure, and show that the adiabatic limit of the eta invariant is essentially the volume of the base hyperbolic Riemann surface with cusps, extending some of the results of Seade and Steer.
Let K be an imaginary quadratic field with discriminant −D. We denote by 𝒪 the ring of integers of K. Let χ be the primitive Dirichlet character corresponding to K/ℚ. Let be the hermitian modular group of degree m. We construct a lifting from S2k(SL2(ℤ)) to S2k+2n(ΓK(2n+1),det −k−n) and a lifting from S2k+1(Γ0(D),χ) to S2k+2n(ΓK(2n),det −k−n). We give an explicit Fourier coefficient formula of the lifting. This is a generalization of the Maass lift considered by Kojima, Krieg and Sugano. We also discuss its extension to the adele group of U(m,m).
Let and be modular forms of half-integral weight k+1/2 and integral weight 2k respectively that are associated to each other under the Shimura–Kohnen correspondence. For suitable fundamental discriminants D, a theorem of Waldspurger relates the coefficient c(D) to the central critical value L(f,D,k) of the Hecke L-series of f twisted by the quadratic Dirichlet character of conductor D. This paper establishes a similar kind of relationship for central critical derivatives in the special case k=1, where f is of weight 2. The role of c(D) in our main theorem is played by the first derivative in the weight direction of the Dth Fourier coefficient of a p-adic family of half-integral weight modular forms. This family arises naturally, and is related under the Shimura correspondence to the Hida family interpolating f in weight 2. The proof of our main theorem rests on a variant of the Gross–Kohnen–Zagier formula for Stark–Heegner points attached to real quadratic fields, which may be of some independent interest. We also formulate a more general conjectural formula of Gross–Kohnen–Zagier type for Stark–Heegner points, and present numerical evidence for it in settings that seem inaccessible to our methods of proof based on p-adic deformations of modular forms.
Generatingfunctions are used to derive formulas for the number of representations of a positive integer by each of the quadratic forms x12+x22+x32+2x42, x12+2x22+2x32+2x42, x12+x22+2x32+4x42 and x12+2x22+4x32+4x42. The formulas show that the number of representations by each form is always positive. Some of the analogous results involving sums of triangular numbers are also given.
Let Bn(x) denote the number of 1’s occurring in the binary expansion of an irrational number x>0. A difficult problem is to provide nontrivial lower bounds for Bn(x) for interesting numbers such as , e or π: their conjectural simple normality in base 2 is equivalent to Bn(x)∼n/2. In this article, amongst other things, we prove inequalities relating Bn(x+y), Bn(xy) and Bn(1/x) to Bn(x) and Bn(y) for any irrational numbers x,y>0, which we prove to be sharp up to a multiplicative constant. As a by-product, we provide an answer to a question raised by Bailey et al. (D. H. Bailey, J. M. Borwein, R. E. Crandall and C. Pomerance, ‘On the binary expansions of algebraic numbers’, J. Théor. Nombres Bordeaux16(3) (2004), 487–518) concerning the binary digits of the square of a series related to the Fibonacci sequence. We also obtain a slight refinement of the main theorem of the same article, which provides a nontrivial lower bound for Bn(α) for any real irrational algebraic number. We conclude the article with effective or conjectural lower bounds for Bn(x) when x is a transcendental number.
Weshow that, for every x exceeding some explicit bound depending only on k and N, there are at least C(k,N)x/log 17x positive and negative coefficients a(n) with n≤x in the Fourier expansion of any non-zero cuspidal Hecke eigenform of even integral weight k≥2 and squarefree level N that is a newform, where C(k,N) depends only on k and N. From this we deduce the existence of a sign change in a short interval.
Pseudodifferential operators are formal Laurent series in the formal inverse ∂−1 of the derivative operator ∂ whose coefficients are holomorphic functions on the Poincaré upper half-plane. Given a discrete subgroup Γ of SL(2,ℝ), automorphic pseudodifferential operators for Γ are pseudodifferential operators that are Γ-invariant, and they are closely linked to Jacobi-like forms and modular forms for Γ. We construct linear maps from the space of automorphic pseudodifferential operators and from the space of Jacobi-like forms for Γ to the cohomology space of the group Γ, and prove that these maps are compatible with the respective Hecke operator actions.
The description of irreducible representations of a group G can be seen as a problem in harmonic analysis; namely, decomposing a suitable space of functions on G into irreducibles for the action of G×G by left and right multiplication. For a split p-adic reductive group G over a local non-archimedean field, unramified irreducible smooth representations are in bijection with semisimple conjugacy classes in the ‘Langlands dual’ group. We generalize this description to an arbitrary spherical variety X of G as follows. Irreducible unramified quotients of the space are in natural ‘almost bijection’ with a number of copies of AX*/WX, the quotient of a complex torus by the ‘little Weyl group’ of X. This leads to a description of the Hecke module of unramified vectors (a weak analog of geometric results of Gaitsgory and Nadler), and an understanding of the phenomenon that representations ‘distinguished’ by certain subgroups are functorial lifts. In the course of the proof, rationality properties of spherical varieties are examined and a new interpretation is given for the action, defined by Knop, of the Weyl group on the set of Borel orbits.
We develop the theory of p-adic confluence of q-difference equations. The main result is the fact that, in the p-adic framework, a function is a (Taylor) solution of a differential equation if and only if it is a solution of a q-difference equation. This fact implies an equivalence, called confluence, between the category of differential equations and those of q-difference equations. We develop this theory by introducing a category of sheaves on the disk D−(1,1), for which the stalk at 1 is a differential equation, the stalk at q isa q-difference equation if q is not a root of unity, and the stalk at a root of unity ξ is a mixed object, formed by a differential equation and an action of σξ.
Let ϕ be a Drinfeld module of rank 2 over the field of rational functions , with . Let K be a fixed imaginary quadratic field over F and d a positive integer. For each prime of good reduction for ϕ, let be a root of the characteristic polynomial of the Frobenius endomorphism of ϕ over the finite field . Let Πϕ(K;d) be the number of primes of degree d such that the field extension is the fixed imaginary quadratic field K. We present upper bounds for Πϕ(K;d) obtained by two different approaches, inspired by similar ones for elliptic curves. The first approach, inspired by the work of Serre, is to consider the image of Frobenius in a mixed Galois representation associated to K and to the Drinfeld module ϕ. The second approach, inspired by the work of Cojocaru, Fouvry and Murty, is based on an application of the square sieve. The bounds obtained with the first method are better, but depend on the fixed quadratic imaginary field K. In our application of the second approach, we improve the results of Cojocaru, Murty and Fouvry by considering projective Galois representations.
We improve Kolyvagin’s upper bound on the order of the p-primary part of the Shafarevich–Tate group of an elliptic curve of rank one over a quadratic imaginary field. In many cases, our bound is precisely that predicted by the Birch and Swinnerton-Dyer conjectural formula.