We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Assuming an averaged form of Mertens’ conjecture and that the ordinates of the non-trivial zeros of the Riemann zeta function are linearly independent over the rationals, we analyse the finer structure of the terms in a well-known formula of Ramanujan.
Ranks of partitions play an important role in the theory of partitions. They provide combinatorial interpretations for Ramanujan’s famous congruences for partition functions. We establish a family of congruences modulo powers of $5$ for ranks of partitions.
In this paper, we prove Kato’s main conjecture for $CM$ modular forms for primes of potentially ordinary reduction under certain hypotheses on the modular form.
We prove new results concerning the additive Galois module structure of wildly ramified non-abelian extensions $K/\mathbb{Q}$ with Galois group isomorphic to $A_4$, $S_4$, $A_5$, and dihedral groups of order $2p^n$ for certain prime powers $p^n$. In particular, when $K/\mathbb{Q}$ is a Galois extension with Galois group $G$ isomorphic to $A_4$, $S_4$ or $A_5$, we give necessary and sufficient conditions for the ring of integers $\mathcal{O}_{K}$ to be free over its associated order in the rational group algebra $\mathbb{Q}[G]$.
In this paper, we investigate the theory of heights in a family of stacky curves following recent work of Ellenberg, Satriano, and Zureick-Brown. We first give an elementary construction of a height which is seen to be dual to theirs. We count rational points having bounded ESZ-B height on a particular stacky curve, answering a question of Ellenberg, Satriano, and Zureick-Brown. We also show that when the Euler characteristic of stacky curves is non-positive, the ESZ-B height coming from the anti-canonical divisor class fails to have the Northcott property. We prove that a stacky version of a conjecture of Vojta is equivalent to the $abc$-conjecture.
The Manin–Peyre conjecture is established for a class of smooth spherical Fano varieties of semisimple rank one. This includes all smooth spherical Fano threefolds of type T as well as some higher-dimensional smooth spherical Fano varieties.
Lafforgue and Genestier-Lafforgue have constructed the global and (semisimplified) local Langlands correspondences for arbitrary reductive groups over function fields. We establish various properties of these correspondences regarding functoriality for cyclic base change: For $\mathbf {Z}/p\mathbf {Z}$-extensions of global function fields, we prove the existence of base change for mod p automorphic forms on arbitrary reductive groups. For $\mathbf {Z}/p\mathbf {Z}$-extensions of local function fields, we construct a base change homomorphism for the mod p Bernstein center of any reductive group. We then use this to prove existence of local base change for mod p irreducible representation along $\mathbf {Z}/p\mathbf {Z}$-extensions, and that Tate cohomology realizes base change descent, verifying a function field version of a conjecture of Treumann-Venkatesh.
The proofs are based on equivariant localization arguments for the moduli spaces of shtukas. They also draw upon new tools from modular representation theory, including parity sheaves and Smith-Treumann theory. In particular, we use these to establish a categorification of the base change homomorphism for mod p spherical Hecke algebras, in a joint appendix with Gus Lonergan.
We provide explicit bounds for the Riemann zeta-function on the line $\mathrm {Re}\,{s}=1$, assuming that the Riemann hypothesis holds up to height T. In particular, we improve some bounds in finite regions for the logarithmic derivative and the reciprocal of the Riemann zeta-function.
This paper goes beyond Katz–Sarnak theory on the distribution of curves over finite fields according to their number of rational points, theoretically, experimentally, and conjecturally. In particular, we give a formula for the limits of the moments measuring the asymmetry of this distribution for (non-hyperelliptic) curves of genus $g\geq 3$. The experiments point to a stronger notion of convergence than the one provided by the Katz–Sarnak framework for all curves of genus $\geq 3$. However, for elliptic curves and for hyperelliptic curves of every genus, we prove that this stronger convergence cannot occur.
We prove a joint partial equidistribution result for common perpendiculars with given density on equidistributing equidistant hypersurfaces, towards a measure supported on truncated stable leaves. We recover a result of Marklof on the joint partial equidistribution of Farey fractions at a given density, and give several analogous arithmetic applications, including in Bruhat–Tits trees.
DeMarco, Krieger, and Ye conjectured that there is a uniform bound B, depending only on the degree d, so that any pair of holomorphic maps $f, g :{\mathbb {P}}^1\to {\mathbb {P}}^1$ with degree $d$ will either share all of their preperiodic points or have at most $B$ in common. Here we show that this uniform bound holds for a Zariski open and dense set in the space of all pairs, $\mathrm {Rat}_d \times \mathrm {Rat}_d$, for each degree $d\geq 2$. The proof involves a combination of arithmetic intersection theory and complex-dynamical results, especially as developed recently by Gauthier and Vigny, Yuan and Zhang, and Mavraki and Schmidt. In addition, we present alternate proofs of the main results of DeMarco, Krieger, and Ye [Uniform Manin-Mumford for a family of genus 2 curves, Ann. of Math. (2) 191 (2020), 949–1001; Common preperiodic points for quadratic polynomials, J. Mod. Dyn. 18 (2022), 363–413] and of Poineau [Dynamique analytique sur$\mathbb {Z}$II : Écart uniforme entre Lattès et conjecture de Bogomolov-Fu-Tschinkel, Preprint (2022), arXiv:2207.01574 [math.NT]]. In fact, we prove a generalization of a conjecture of Bogomolov, Fu, and Tschinkel in a mixed setting of dynamical systems and elliptic curves.
We use the theory of trianguline $(\varphi ,\Gamma )$-modules over pseudorigid spaces to prove a modularity lifting theorem for certain Galois representations which are trianguline at p, including those with characteristic p coefficients. The use of pseudorigid spaces lets us construct integral models of the trianguline varieties of [BHS17], [Che13] after bounding the slope, and we carry out a Taylor–Wiles patching argument for families of overconvergent modular forms. This permits us to construct a patched quaternionic eigenvariety and deduce our modularity results.
Bogomolov and Tschinkel [‘Algebraic varieties over small fields’, Diophantine Geometry, U. Zannier (ed.), CRM Series, 4 (Scuola Normale Superiore di Pisa, Pisa, 2007), 73–91] proved that, given two complex elliptic curves $E_1$ and $E_2$ along with even degree-$2$ maps $\pi _j\colon E_j\to \mathbb {P}^1$ having different branch loci, the intersection of the image of the torsion points of $E_1$ and $E_2$ under their respective $\pi _j$ is finite. They conjectured (also in works with Fu) that the cardinality of this intersection is uniformly bounded independently of the elliptic curves. The recent proof of the uniform Manin–Mumford conjecture implies a full solution of the Bogomolov–Fu–Tschinkel conjecture. In this paper, we prove a generalisation of the Bogomolov–Fu–Tschinkel conjecture whereby, instead of even degree-$2$ maps, one can use any rational functions of bounded degree on the elliptic curves as long as they have different branch loci. Our approach combines Nevanlinna theory with the uniform Manin–Mumford conjecture. With similar techniques, we also prove a result on lower bounds for ranks of elliptic curves over number fields.
We prove a conjectural formula for the Brumer–Stark units. Dasgupta and Kakde have shown the formula is correct up to a bounded root of unity. In this paper, we resolve the ambiguity in their result. We also remove an assumption from Dasgupta–Kakde’s result on the formula.
A subset of positive integers F is a Schreier set if it is nonempty and $|F|\leqslant \min F$ (here $|F|$ is the cardinality of F). For each positive integer k, we define $k\mathcal {S}$ as the collection of all the unions of at most k Schreier sets. Also, for each positive integer n, let $(k\mathcal {S})^n$ be the collection of all sets in $k\mathcal {S}$ with maximum element equal to n. It is well known that the sequence $(|(1\mathcal {S})^n|)_{n=1}^\infty $ is the Fibonacci sequence. In particular, the sequence satisfies a linear recurrence. We show that the sequence $(|(k\mathcal {S})^n|)_{n=1}^\infty $ satisfies a linear recurrence for every positive k.
We show that certain sums of partition numbers are divisible by multiples of 2 and 3. For example, if $p(n)$ denotes the number of unrestricted partitions of a positive integer n (and $p(0)=1$, $p(n)=0$ for $n<0$), then for all nonnegative integers m,
We use the Weyl bound for Dirichlet L-functions to derive zero-density estimates for L-functions associated to families of fixed-order Dirichlet characters. The results improve on previous bounds given by the author when $\sigma $ is sufficiently distant from the critical line.
We study bracket words, which are a far-reaching generalization of Sturmian words, along Hardy field sequences, which are a far-reaching generalization of Piatetski-Shapiro sequences $\lfloor n^c \rfloor $. We show that sequences thus obtained are deterministic (that is, they have subexponential subword complexity) and satisfy Sarnak’s conjecture.
Quaternionic automorphic representations are one attempt to generalize to other groups the special place holomorphic modular forms have among automorphic representations of $\mathrm {GL}_2$. Here, we use ‘hyperendoscopy’ techniques to develop a general trace formula and understand them on an arbitrary group. Then we specialize this general formula to study quaternionic automorphic representations on the exceptional group $G_2$, eventually getting an analog of the Eichler–Selberg trace formula for classical modular forms. We finally use this together with some techniques of Chenevier, Renard and Taïbi to compute dimensions of spaces of level-$1$ quaternionic representations. On the way, we prove a Jacquet–Langlands-style result describing them in terms of classical modular forms and automorphic representations on the compact-at-infinity form $G_2^c$.
The main technical difficulty is that the quaternionic discrete series that quaternionic automorphic representations are defined in terms of do not satisfy a condition of being ‘regular’. A real representation theory argument shows that regularity miraculously does not matter for specifically the case of quaternionic discrete series.
We hope that the techniques and shortcuts highlighted in this project are of interest in other computations about discrete-at-infinity automorphic representations on arbitrary reductive groups instead of just classical ones.
We prove the existence of $\mathrm {GSpin}_{2n}$-valued Galois representations corresponding to cohomological cuspidal automorphic representations of certain quasi-split forms of ${\mathrm {GSO}}_{2n}$ under the local hypotheses that there is a Steinberg component and that the archimedean parameters are regular for the standard representation. This is based on the cohomology of Shimura varieties of abelian type, of type $D^{\mathbb {H}}$, arising from forms of ${\mathrm {GSO}}_{2n}$. As an application, under similar hypotheses, we compute automorphic multiplicities, prove meromorphic continuation of (half) spin L-functions and improve on the construction of ${\mathrm {SO}}_{2n}$-valued Galois representations by removing the outer automorphism ambiguity.