We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Fix a prime $p\geq 11$. We show that there exists a positive integer $m$ such that any subset of $\mathbb {F}_p^n\times \mathbb {F}_p^n$ containing no nontrivial configurations of the form $(x,y)$, $(x,y+z)$, $(x,y+2z)$, $(x+z,y)$ must have density $\ll 1/\log _{m}{n}$, where $\log _{m}$ denotes the $m$-fold iterated logarithm. This gives the first reasonable bound in the multidimensional Szemerédi theorem for a two-dimensional four-point configuration in any setting.
For homogeneous polynomials $G_1,\ldots ,G_k$ over a finite field, their Dwork complex is defined by Adolphson and Sperber, based on Dwork’s theory. In this article, we will construct an explicit cochain map from the Dwork complex of $G_1,\ldots ,G_k$ to the Monsky–Washnitzer complex associated with some affine bundle over the complement $\mathbb {P}^n\setminus X_G$ of the common zero $X_G$ of $G_1,\ldots ,G_k$, which computes the rigid cohomology of $\mathbb {P}^n\setminus X_G$. We verify that this cochain map realizes the rigid cohomology of $\mathbb {P}^n\setminus X_G$ as a direct summand of the Dwork cohomology of $G_1,\ldots ,G_k$. We also verify that the comparison map is compatible with the Frobenius and the Dwork operator defined on both complexes, respectively. Consequently, we extend Katz’s comparison results in [19] for projective hypersurface complements to arbitrary projective complements.
We study finite orbits of non-elementary groups of automorphisms of compact projective surfaces. We prove that if the surface and the group are defined over a number field $\mathbf {k}$ and the group contains parabolic elements, then the set of finite orbits is not Zariski dense, except in certain very rigid situations, known as Kummer examples. Related results are also established when $\mathbf {k} = \mathbf {C}$. An application is given to the description of ‘canonical vector heights’ associated to such automorphism groups.
Noting a curious link between Andrews’ even-odd crank and the Stanley rank, we adopt a combinatorial approach building on the map of conjugation and continue the study of integer partitions with parts separated by parity. Our motivation is twofold. Firstly, we derive results for certain restricted partitions with even parts below odd parts. These include a Franklin-type involution proving a parametrized identity that generalizes Andrews’ bivariate generating function, and two families of Andrews–Beck type congruences. Secondly, we introduce several new subsets of partitions that are stable (i.e. invariant under conjugation) and explore their connections with three third-order mock theta functions $\omega (q)$, $\nu (q)$, and $\psi ^{(3)}(q)$, introduced by Ramanujan and Watson.
Let $n$ be an integer congruent to $0$ or $3$ modulo $4$. Under the assumption of the ABC conjecture, we prove that, given any integer $m$ fulfilling only a certain coprimeness condition, there exist infinitely many imaginary quadratic fields having an everywhere unramified Galois extension of group $A_n \times C_m$. The same result is obtained unconditionally in special cases.
The problem of classifying elliptic curves over $\mathbb Q$ with a given discriminant has received much attention. The analogous problem for genus $2$ curves has only been tackled when the absolute discriminant is a power of $2$. In this article, we classify genus $2$ curves C defined over ${\mathbb Q}$ with at least two rational Weierstrass points and whose absolute discriminant is an odd prime. In fact, we show that such a curve C must be isomorphic to a specialization of one of finitely many $1$-parameter families of genus $2$ curves. In particular, we provide genus $2$ analogues to Neumann–Setzer families of elliptic curves over the rationals.
We establish higher moment formulae for Siegel transforms on the space of affine unimodular lattices as well as on certain congruence quotients of $\mathrm {SL}_d({\mathbb {R}})$. As applications, we prove functional central limit theorems for lattice point counting for affine and congruence lattices using the method of moments.
We generalize bounds of Liu–Wan–Xiao for slopes in eigencurves for definite unitary groups of rank $2$ to slopes in eigenvarieties for definite unitary groups of any rank. We show that for a definite unitary group of rank $n$, the Newton polygon of the characteristic power series of the $U_p$ Hecke operator has exact growth rate $x^{1+2/{n(n-1)}}$, times a constant proportional to the distance of the weight from the boundary of weight space. The proof goes through the classification of forms associated to principal series representations. We also give a consequence for the geometry of these eigenvarieties over the boundary of weight space.
Let $K={\mathbb {Q}}(\theta )$ be an algebraic number field with $\theta $ satisfying a monic irreducible polynomial $f(x)$ of degree n over ${\mathbb {Q}}.$ The polynomial $f(x)$ is said to be monogenic if $\{1,\theta ,\ldots ,\theta ^{n-1}\}$ is an integral basis of K. Deciding whether or not a monic irreducible polynomial is monogenic is an important problem in algebraic number theory. In an attempt to answer this problem for a certain family of polynomials, Jones [‘A brief note on some infinite families of monogenic polynomials’, Bull. Aust. Math. Soc.100 (2019), 239–244] conjectured that if $n\ge 3$, $1\le m\le n-1$, $\gcd (n,mB)=1$ and A is a prime number, then the polynomial $x^n+A (Bx+1)^m\in {\mathbb {Z}}[x]$ is monogenic if and only if $n^n+(-1)^{n+m}B^n(n-m)^{n-m}m^mA$ is square-free. We prove that this conjecture is true.
Let K be a finite extension of the p-adic field ${\mathbb {Q}}_p$ of degree d, let ${{\mathbb {F}}\,\!{}}$ be a finite field of characteristic p and let ${\overline {{D}}}$ be an n-dimensional pseudocharacter in the sense of Chenevier of the absolute Galois group of K over the field ${{\mathbb {F}}\,\!{}}$. For the universal mod p pseudodeformation ring ${\overline {R}{{\phantom {\overline {\overline m}}}}^{\operatorname {univ}}_{{{\overline {{D}}}}}}$ of ${\overline {{D}}}$, we prove the following: The ring $\overline R_{{\overline {{D}}}}^{\mathrm {ps}}$ is equidimensional of dimension $dn^2+1$. Its reduced quotient ${\overline {R}{{\phantom {\overline {\overline m}}}}^{\operatorname {univ}}_{{{\overline {{D}}},{\operatorname {red}}}}}$ contains a dense open subset of regular points x whose associated pseudocharacter ${D}_x$ is absolutely irreducible and nonspecial in a certain technical sense that we shall define. Moreover, we will characterize in most cases when K does not contain a p-th root of unity the singular locus of ${\mathrm {Spec}}\ {\overline {R}{{\phantom {\overline {\overline m}}}}^{\operatorname {univ}}_{{{\overline {{D}}}}}}$. Similar results were proved by Chenevier for the generic fiber of the universal pseudodeformation ring ${R{{\phantom {\overline {m}}}}^{\operatorname {univ}}_{{{\overline {D}}}}}$ of ${\overline {{D}}}$.
We obtain a new bound on the second moment of modified shifted convolutions of the generalized threefold divisor function and show that, for applications, the modified version is sufficient.
Two sets $A,B$ of positive integers are called exact additive complements if $A+B$ contains all sufficiently large integers and $A(x)B(x)/x\rightarrow 1$. For $A=\{a_1<a_2<\cdots \}$, let $A(x)$ denote the counting function of A and let $a^*(x)$ denote the largest element in $A\bigcap [1,x]$. Following the work of Ruzsa [‘Exact additive complements’, Quart. J. Math.68 (2017) 227–235] and Chen and Fang [‘Additive complements with Narkiewicz’s condition’, Combinatorica39 (2019), 813–823], we prove that, for exact additive complements $A,B$ with ${a_{n+1}}/ {na_n}\rightarrow \infty $,
To any k-dimensional subspace of $\mathbb {Q}^n$ one can naturally associate a point in the Grassmannian $\mathrm {Gr}_{n,k}(\mathbb {R})$ and two shapes of lattices of rank k and $n-k$, respectively. These lattices originate by intersecting the k-dimensional subspace and its orthogonal with the lattice $\mathbb {Z}^n$. Using unipotent dynamics, we prove simultaneous equidistribution of all of these objects under congruence conditions when $(k,n) \neq (2,4)$.
We prove a large finite field version of the Boston–Markin conjecture on counting Galois extensions of the rational function field with a given Galois group and the smallest possible number of ramified primes. Our proof involves a study of structure groups of (direct products of) racks.
In this paper, we express the reduction types of Picard curves in terms of tropical invariants associated with binary quintics. We also give a general framework for tropical invariants associated with group actions on arbitrary varieties. The problem of finding tropical invariants for binary forms fits in this general framework by mapping the space of binary forms to symmetrized versions of the Deligne–Mumford compactification $\overline{M}_{0,n}$.
For $k\geq 2$ and a nonzero integer n, a generalised Diophantine m-tuple with property $D_k(n)$ is a set of m positive integers $S = \{a_1,a_2,\ldots , a_m\}$ such that $a_ia_j + n$ is a kth power for $1\leq i< j\leq m$. Define $M_k(n):= \text {sup}\{|S| : S$ having property $D_k(n)\}$. Dixit et al. [‘Generalised Diophantine m-tuples’, Proc. Amer. Math. Soc.150(4) (2022), 1455–1465] proved that $M_k(n)=O(\log n)$, for a fixed k, as n varies. In this paper, we obtain effective upper bounds on $M_k(n)$. In particular, we show that for $k\geq 2$, $M_k(n) \leq 3\,\phi (k) \log n$ if n is sufficiently large compared to k.
We investigate Eisenstein congruences between the so-called Euler systems of Garrett–Rankin–Selberg type. This includes the cohomology classes of Beilinson–Kato, Beilinson–Flach, and diagonal cycles. The proofs crucially rely on different known versions of the Bloch–Kato conjecture, and are based on the study of the Perrin-Riou formalism and the comparison between the different p-adic L-functions.
Let $\Gamma \subset \overline {\mathbb {Q}}^*$ be a finitely generated subgroup. Denote by $\Gamma _{\mathrm {div}}$ its division group. A recent conjecture due to Rémond, related to the Zilber–Pink conjecture, predicts that the absolute logarithmic Weil height of an element of $\mathbb {Q}(\Gamma _{\mathrm {div}})^*\backslash \Gamma _{\mathrm {div}}$ is bounded from below by a positive constant depending only on $\Gamma $. In this paper, we propose a new way to tackle this problem.
This paper is concerned with the relationship of $y$-smooth integers and de Bruijn's approximation $\Lambda (x,\,y)$. Under the Riemann hypothesis, Saias proved that the count of $y$-smooth integers up to $x$, $\Psi (x,\,y)$, is asymptotic to $\Lambda (x,\,y)$ when $y \ge (\log x)^{2+\varepsilon }$. We extend the range to $y \ge (\log x)^{3/2+\varepsilon }$ by introducing a correction factor that takes into account the contributions of zeta zeros and prime powers. We use this correction term to uncover a lower order term in the asymptotics of $\Psi (x,\,y)/\Lambda (x,\,y)$. The term relates to the error term in the prime number theorem, and implies that large positive (resp. negative) values of $\sum _{n \le y} \Lambda (n)-y$ lead to large positive (resp. negative) values of $\Psi (x,\,y)-\Lambda (x,\,y)$, and vice versa. Under the Linear Independence hypothesis, we show a Chebyshev's bias in $\Psi (x,\,y)-\Lambda (x,\,y)$.