$x^2+y^2=z^3$
$\mathcal {L}$-invariants and Fontaine–Mazur
$\mathcal {L}$-invariants
$x^4+y^4=z^4$ OVER QUADRATIC EXTENSIONS OF
${\mathbb {Q}}(\zeta _8)(T_1,T_2,\ldots ,T_n)$