To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that for any set D of at least two digits in a given base b, almost all even integers taking digits only in D when written in base b satisfy the Goldbach conjecture. More formally, if $\mathcal {A}$ is the set of numbers whose digits base b are exclusively from D, almost all elements of $\mathcal {A}$ satisfy the Goldbach conjecture. Moreover, the number of even integers in $\mathcal {A}$ which are less than X and not representable as the sum of two primes is less than $|\mathcal {A}\cap \{1,\ldots ,X\}|^{1-\delta }$.
Let E be an elliptic curve defined over $\mathbb {Q}$ with good ordinary reduction at a prime $p\geq 5$ and let F be an imaginary quadratic field. Under appropriate assumptions, we show that the Pontryagin dual of the fine Mordell–Weil group of E over the $\mathbb {Z}_{p}^2$-extension of F is pseudo-null as a module over the Iwasawa algebra of the group $\mathbb {Z}_{p}^2$.
Let $\mathbb{N}$ be the set of all non-negative integers. For any integer r and m, let $r+m\mathbb{N}=\{r+mk: k\in\mathbb{N}\}$. For $S\subseteq \mathbb{N}$ and $n\in \mathbb{N}$, let $R_{S}(n)$ denote the number of solutions of the equation $n=s+s'$ with $s, s'\in S$ and $s \lt s'$. Let $r_{1}, r_{2}, m$ be integers with $0 \lt r_{1} \lt r_{2} \lt m$ and $2\mid r_{1}$. In this paper, we prove that there exist two sets C and D with $C\cup D=\mathbb{N}$ and $C\cap D=(r_{1}+m\mathbb{N})\cup (r_{2}+m\mathbb{N})$ such that $R_{C}(n)=R_{D}(n)$ for all $n\in\mathbb{N}$ if and only if there exists a positive integer l such that $r_{1}=2^{2l+1}-2, r_{2}=2^{2l+1}-1, m=2^{2l+2}-2$.
We compute primes $p \equiv 5 \bmod 8$ up to $10^{11}$ for which the Pellian equation $x^2-py^2=-4$ has no solutions in odd integers; these are the members of sequence A130229 in the Online Encyclopedia of Integer Sequences. We find that the number of such primes $p\leqslant x$ is well approximated by
We prove structural results for measure-preserving systems, called Furstenberg systems, naturally associated with bounded multiplicative functions. We show that for all pretentious multiplicative functions, these systems always have rational discrete spectrum and, as a consequence, zero entropy. We obtain several other refined structural and spectral results, one consequence of which is that the Archimedean characters are the only pretentious multiplicative functions that have Furstenberg systems with trivial rational spectrum, another is that a pretentious multiplicative function has ergodic Furstenberg systems if and only if it pretends to be a Dirichlet character, and a last one is that for any fixed pretentious multiplicative function, all its Furstenberg systems are isomorphic. We also study structural properties of Furstenberg systems of a class of multiplicative functions, introduced by Matomäki, Radziwiłł, and Tao, which lie in the intermediate zone between pretentiousness and strong aperiodicity. In a work of the last two authors and Gomilko, several examples of this class with exotic ergodic behavior were identified, and here we complement this study and discover some new unexpected phenomena. Lastly, we prove that Furstenberg systems of general bounded multiplicative functions have divisible spectrum. When these systems are obtained using logarithmic averages, we show that a trivial rational spectrum implies a strong dilation invariance property, called strong stationarity, but, quite surprisingly, this property fails when the systems are obtained using Cesàro averages.
In this paper, we define compact open subgroups of quasi-split even unitary groups for each even non-negative integer and establish the theory of local newforms for irreducible tempered generic representations with a certain condition on the central characters. To do this, we use the local Gan–Gross–Prasad conjecture, the local Rankin–Selberg integrals and the local theta correspondence.
The linear arithmetic fundamental lemma (AFL) is a conjectural identity of intersection numbers on Lubin–Tate deformation spaces and derivatives of orbital integrals. It was introduced for elliptic orbits by Li, and Howard and Li. For elliptic orbits, the relevant intersection problem is formulated for the basic isogeny class. In the present article, we extend the conjecture to all orbits and all isogeny classes. Our main result is a reduction of the non-basic cases of the AFL to the basic ones, which relies on an analysis of the connected-étale sequence. Our results will be relevant in the global setting, where also locally non-elliptic orbits may contribute in a non-trivial way.
Let $k \geqslant 2$ and $b \geqslant 3$ be integers, and suppose that $d_1, d_2 \in \{0,1,\dots , b - 1\}$ are distinct and coprime. Let $\mathcal {S}$ be the set of non-negative integers, all of whose digits in base $b$ are either $d_1$ or $d_2$. Then every sufficiently large integer is a sum of at most $b^{160 k^2}$ numbers of the form $x^k$, $x \in \mathcal {S}$.
We show that there exists some $\delta > 0$ such that, for any set of integers B with $|B\cap[1,Y]|\gg Y^{1-\delta}$ for all $Y \gg 1$, there are infinitely many primes of the form $a^2+b^2$ with $b\in B$. We prove a quasi-explicit formula for the number of primes of the form $a^2+b^2 \leq X$ with $b \in B$ for any $|B|=X^{1/2-\delta}$ with $\delta < 1/10$ and $B \subseteq [\eta X^{1/2},(1-\eta)X^{1/2}] \cap {\mathbb{Z}}$, in terms of zeros of Hecke L-functions on ${\mathbb{Q}}(i)$. We obtain the expected asymptotic formula for the number of such primes provided that the set B does not have a large subset which consists of multiples of a fixed large integer. In particular, we get an asymptotic formula if B is a sparse subset of primes. For an arbitrary B we obtain a lower bound for the number of primes with a weaker range for $\delta$, by bounding the contribution from potential exceptional characters.
We develop the theory and algorithms necessary to be able to verify the strong Birch–Swinnerton-Dyer Conjecture for absolutely simple modular abelian varieties over ${\mathbf {Q}}$. We apply our methods to all 28 Atkin–Lehner quotients of $X_0(N)$ of genus $2$, all 97 genus $2$ curves from the LMFDB whose Jacobian is of this type and six further curves originally found by Wang. We are able to verify the strong BSD Conjecture unconditionally and exactly in all these cases; this is the first time that strong BSD has been confirmed for absolutely simple abelian varieties of dimension at least $2$. We also give an example where we verify that the order of the Tate–Shafarevich group is $7^2$ and agrees with the order predicted by the BSD Conjecture.
In [2], Pillay introduced definable Galois cohomology, a model-theoretic generalization of Galois cohomology. Let M be an atomic and strongly $\omega $-homogeneous structure over a set of parameters A. Let B be a normal extension of A in M. We show that a short exact sequence of automorphism groups $1 \to \operatorname {\mathrm {Aut}}(M/B) \to \operatorname {\mathrm {Aut}}(M/A) \to \operatorname {\mathrm {Aut}}(B/A) \to 1$ induces a short exact sequence in definable Galois cohomology. We also discuss compatibilities with [3]. Our result complements the long exact sequence in definable Galois cohomology developed in [4].
Let X be a smooth projective variety of dimension $n\geq 2$ and $G\cong \mathbf {Z}^{n-1}$ a free abelian group of automorphisms of X over $\overline {\mathbf {Q}}$. Suppose that G is of positive entropy. We construct a canonical height function $\widehat {h}_G$ associated with G, corresponding to a nef and big $\mathbf {R}$-divisor, satisfying the Northcott property. By characterizing the zero locus of $\widehat {h}_G$, we prove the Kawaguchi–Silverman conjecture for each element of G. As for other applications, we determine the height counting function for non-periodic points and show that X satisfies potential density.
Let (K, v) be a valued field and $\phi\in K[x]$ be any key polynomial for a residue-transcendental extension w of v to K(x). In this article, using the ϕ-Newton polygon of a polynomial $f\in K[x]$ (with respect to w), we give a lower bound for the degree of an irreducible factor of f. This generalizes the result given in Jakhar and Srinivas (On the irreducible factors of a polynomial II, J. Algebra556 (2020), 649–655).
In [15], using methods from ergodic theory, a longstanding conjecture of Erdős (see [5, Page 305]) about sumsets in large subsets of the natural numbers was resolved. In this paper, we extend this result to several important classes of amenable groups, including all finitely generated virtually nilpotent groups and all abelian groups $(G,+)$ with the property that the subgroup $2G := \{g+g : g\in G\}$ has finite index. We prove that in any group G from the above classes, any $A\subset G$ with positive upper Banach density contains a shifted product set of the form $\{tb_ib_j\colon i<j\}$, for some infinite sequence $(b_n)_{n\in \mathbb {N}}$ and some $t\in G$. In fact, we show this result for all amenable groups that posses a property which we call square absolute continuity. Our results provide answers to several questions and conjectures posed in [13].
Let p be a fixed prime number, and let F be a global function field with characteristic not equal to p. In this article, we shall study the variation properties of the Sylow p-subgroups of the even K-groups in a p-adic Lie extension of F. When the p-adic Lie extension is assumed to contain the cyclotomic $\mathbb {Z}_p$-extension of F, we obtain growth estimate of these groups. We also establish a duality between the direct limit and inverse limit of the even K-groups.
In this paper, we study the twisted Ruelle zeta function associated with the geodesic flow of a compact, hyperbolic, odd-dimensional manifold X. The twisted Ruelle zeta function is associated with an acyclic representation $\chi \colon \pi _{1}(X) \rightarrow \operatorname {\mathrm {GL}}_{n}(\mathbb {C})$, which is close enough to an acyclic, unitary representation. In this case, the twisted Ruelle zeta function is regular at zero and equals the square of the refined analytic torsion, as it is introduced by Braverman and Kappeler in [6], multiplied by an exponential, which involves the eta invariant of the even part of the odd-signature operator, associated with $\chi $.
We introduce the L-series of weakly holomorphic modular forms using Laplace transforms and give their functional equations. We then determine converse theorems for vector-valued harmonic weak Maass forms, Jacobi forms, and elliptic modular forms of half-integral weight in Kohnen plus space.
We prove a general convergence result for zeta functions of prehomogeneous vector spaces extending results of H. Saito, F. Sato and Yukie. Our analysis points to certain subspaces which yield boundary terms. We study it further in the setup arising from nilpotent orbits. In certain cases we determine the residue at the rightmost pole of the zeta function.
We show that for any $\varepsilon>0$, the number of monic, reciprocal, length-$5$ integer polynomials that have house at least $1+\varepsilon $ is finite. The proof is algorithmic, and we are consequently able to compute a complete list (not imposing any bound on the degree) of small Mahler measures of length-$5$ polynomials that have house at least $1.01$.
For larger lengths, the analogous finiteness statement is false, as we show by examples. For length $6$ we show that if one also imposes an upper bound for the Mahler measure that is strictly below the smallest Pisot number $\theta = 1.32471\cdots $, and if the length $6$ polynomial is a cyclotomic multiple of an irreducible polynomial, then the number of polynomials with house at least $1+\varepsilon $ is finite.
We pursue these ideas to search opportunistically for small Mahler measures represented by longer polynomials. We find one new small measure.
We give an algorithm that finds all Salem numbers in an interval $[a,b]$ that are the Mahler measure of an integer polynomial of length at most $6$, provided $1<a \le b < \theta $.
Let C be a curve defined over a number field K and write g for the genus of C and J for the Jacobian of C. Let $n \ge 2$. We say that an algebraic point $P \in C(\overline {K})$ has degree n if the extension $K(P)/K$ has degree n. By the Galois group of P we mean the Galois group of the Galois closure of $K(P)/K$ which we identify as a transitive subgroup of $S_n$. We say that P is primitive if its Galois group is primitive as a subgroup of $S_n$. We prove the following ‘single source’ theorem for primitive points. Suppose $g>(n-1)^2$ if $n \ge 3$ and $g \ge 3$ if $n=2$. Suppose that either J is simple or that $J(K)$ is finite. Suppose C has infinitely many primitive degree n points. Then there is a degree n morphism $\varphi : C \rightarrow \mathbb {P}^1$ such that all but finitely many primitive degree n points correspond to fibres $\varphi ^{-1}(\alpha )$ with $\alpha \in \mathbb {P}^1(K)$.
We prove, moreover, under the same hypotheses, that if C has infinitely many degree n points with Galois group $S_n$ or $A_n$, then C has only finitely many degree n points of any other primitive Galois group.