To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let G be a finite nilpotent group and $n\in \{3,4, 5\}$. Consider $S_n\times G$ as a subgroup of $S_n\times S_{|G|}\subset S_{n|G|}$, where G embeds into the second factor of $S_n\times S_{|G|}$ via the regular representation. Over any number field k, we prove the strong form of Malle’s conjecture (cf. Malle (2002, Journal of Number Theory 92, 315–329)) for $S_n\times G$ viewed as a subgroup of $S_{n|G|}$. Our result requires that G satisfies some mild conditions.
We investigate the sums $(1/\sqrt {H}) \sum _{X < n \leq X+H} \chi (n)$, where $\chi $ is a fixed non-principal Dirichlet character modulo a prime q, and $0 \leq X \leq q-1$ is uniformly random. Davenport and Erdős, and more recently Lamzouri, proved central limit theorems for these sums provided $H \rightarrow \infty $ and $(\log H)/\log q \rightarrow 0$ as $q \rightarrow \infty $, and Lamzouri conjectured these should hold subject to the much weaker upper bound $H=o(q/\log q)$. We prove this is false for some $\chi $, even when $H = q/\log ^{A}q$ for any fixed $A> 0$. However, we show it is true for ‘almost all’ characters on the range $q^{1-o(1)} \leq H = o(q)$.
Using Pólya’s Fourier expansion, these results may be reformulated as statements about the distribution of certain Fourier series with number theoretic coefficients. Tools used in the proofs include the existence of characters with large partial sums on short initial segments, and moment estimates for trigonometric polynomials with random multiplicative coefficients.
We address a core partition regularity problem in Ramsey theory by proving that every finite coloring of the positive integers contains monochromatic Pythagorean pairs (i.e., $x,y\in {\mathbb N}$ such that $x^2\pm y^2=z^2$ for some $z\in {\mathbb N}$). We also show that partitions generated by level sets of multiplicative functions taking finitely many values always contain Pythagorean triples. Our proofs combine known Gowers uniformity properties of aperiodic multiplicative functions with a novel and rather flexible approach based on concentration estimates of multiplicative functions.
A bielliptic surface (or hyperelliptic surface) is a smooth surface with a numerically trivial canonical divisor such that the Albanese morphism is an elliptic fibration. In the first part of this article, we study the structure of bielliptic surfaces over a field of characteristic different from $2$ and $3$, in order to prove the Shafarevich conjecture for bielliptic surfaces with rational points. Furthermore, we demonstrate that the Shafarevich conjecture does not generally hold for bielliptic surfaces without rational points. In particular, this article completes the study of the Shafarevich conjecture for minimal surfaces of Kodaira dimension $0$. In the second part of this article, we study a Néron model of a bielliptic surface. We establish the potential existence of a Néron model for a bielliptic surface when the residual characteristic is not equal to $2$ or $3$.
We demonstrate the existence of K-multimagic squares of order N consisting of $N^2$ distinct integers whenever $N> 2K(K+1)$. This improves our earlier result [D. Flores, ‘A circle method approach to K-multimagic squares’, preprint (2024), arXiv:2406.08161] in which we only required $N+1$ distinct integers. Additionally, we present a direct method by which our analysis of the magic square system may be used to show the existence of $N \times N$ magic squares consisting of distinct kth powers when
$$ \begin{align*}N> \begin{cases} 2^{k+1} & \text{if}\ 2 \leqslant k \leqslant 4, \\ 2 \lceil k(\log k + 4.20032) \rceil & \text{if}\ k \geqslant 5, \end{cases}\end{align*} $$
improving on a recent result by Rome and Yamagishi [‘On the existence of magic squares of powers’, preprint (2024), arxiv:2406.09364].
Inspired by work of Andrews and Newman [‘Partitions and the minimal excludant’, Ann. Comb.23 (2019), 249–254] on the minimal excludant or ‘mex’ of partitions, we define four new classes of minimal excludants for overpartitions and establish relations to certain functions due to Ramanujan.
Let C and W be two integer sets. If $C+W=\mathbb {Z}$, then we say that C is an additive complement to W. If no proper subset of C is an additive complement to W, then we say that C is a minimal additive complement to W. We study the existence of a minimal additive complement to $W=\{w_i\}_{i=1}^{\infty}$ when W is not eventually periodic and $w_{i+1}-w_{i}\in \{2,3\}$ for all i.
We give a conditional bound for the average analytic rank of elliptic curves over an arbitrary number field. In particular, under the assumptions that all elliptic curves over a number field K are modular and have L-functions which satisfy the Generalized Riemann Hypothesis, we show that the average analytic rank of isomorphism classes of elliptic curves over K is bounded above by $(9\deg (K)+1)/2$, when ordered by naive height. A key ingredient in the proof is giving asymptotics for the number of elliptic curves over an arbitrary number field with a prescribed local condition; these results are obtained by proving general results for counting points of bounded height on weighted projective stacks with a prescribed local condition, which may be of independent interest.
We determine the cohomology of the closed Drinfeld stratum of p-adic Deligne–Lusztig schemes of Coxeter type attached to arbitrary inner forms of unramified groups over a local non-archimedean field. We prove that the corresponding torus weight spaces are supported in exactly one cohomological degree and are pairwise non-isomorphic irreducible representations of the pro-unipotent radical of the corresponding parahoric subgroup. We also prove that all Moy–Prasad quotients of this stratum are maximal varieties, and we investigate the relation between the resulting representations and Kirillov’s orbit method.
We provide a uniform bound on the partial sums of multiplicative functions under very general hypotheses. As an application, we give a nearly optimal estimate for the count of $n \le x$ for which the Alladi–Erdős function $A(n) = \sum_{p^k \parallel n} k p$ takes values in a given residue class modulo q, where q varies uniformly up to a fixed power of $\log x$. We establish a similar result for the equidistribution of the Euler totient function $\phi(n)$ among the coprime residues to the ‘correct’ moduli q that vary uniformly in a similar range and also quantify the failure of equidistribution of the values of $\phi(n)$ among the coprime residue classes to the ‘incorrect’ moduli.
The triangle removal states that if G contains $\varepsilon n^2$ edge-disjoint triangles, then G contains $\delta (\varepsilon )n^3$ triangles. Unfortunately, there are no sensible bounds on the order of growth of $\delta (\varepsilon )$, and at any rate, it is known that $\delta (\varepsilon )$ is not polynomial in $\varepsilon $. Csaba recently obtained an asymmetric variant of the triangle removal, stating that if G contains $\varepsilon n^2$ edge-disjoint triangles, then G contains $2^{-\operatorname {\mathrm {poly}}(1/\varepsilon )}\cdot n^5$ copies of $C_5$. To this end, he devised a new variant of Szemerédi’s regularity lemma. We obtain the following results:
• We first give a regularity-free proof of Csaba’s theorem, which improves the number of copies of $C_5$ to the optimal number $\operatorname {\mathrm {poly}}(\varepsilon )\cdot n^5$.
• We say that H is $K_3$-abundant if every graph containing $\varepsilon n^2$ edge-disjoint triangles has $\operatorname {\mathrm {poly}}(\varepsilon )\cdot n^{\lvert V(H)\rvert }$ copies of H. It is easy to see that a $K_3$-abundant graph must be triangle-free and tripartite. Given our first result, it is natural to ask if all triangle-free tripartite graphs are $K_3$-abundant. Our second result is that assuming a well-known conjecture of Ruzsa in additive number theory, the answer to this question is negative.
Our proofs use a mix of combinatorial, number-theoretic, probabilistic and Ramsey-type arguments.
Let $g(x)=x^3+ax^2+bx+c$ and $f(x)=g(x^3)$ be irreducible polynomials with rational coefficients, and let $ {\mathrm{Gal}}(f)$ be the Galois group of $f(x)$ over $\mathbb {Q}$. We show $ {\mathrm{Gal}}(f)$ is one of 11 possible transitive subgroups of $S_9$, defined up to conjugacy; we use $ {\mathrm{Disc}}(f)$, $ {\mathrm{Disc}}(g)$ and two additional low-degree resolvent polynomials to identify $ {\mathrm{Gal}}(f)$. We further show how our method can be used for determining one-parameter families for a given group. Also included is a related algorithm that, given a field $L/\mathbb {Q}$, determines when L can be defined by an irreducible polynomial of the form $g(x^3)$ and constructs such a polynomial when it exists.
Our work owes its origin to a recent note of Ram Murty [‘Irrationality of zeros of the digamma function’, Number Theory in Memory of Eduard Wirsing (eds. H. Maier, R. Steuding and J. Steuding) (Springer, Cham, 2023), 237–243], in which he proves that all the zeros of the digamma function are irrational with at most one possible exception. We extend this investigation to higher-order polygamma functions.
In this work, we develop an integral representation for the partial L-function of a pair $\pi \times \tau $ of genuine irreducible cuspidal automorphic representations, $\pi $ of the m-fold covering of Matsumoto of the symplectic group $\operatorname {\mathrm {Sp}}_{2n}$ and $\tau $ of a certain covering group of $\operatorname {\mathrm {GL}}_k$, with arbitrary m, n and k. Our construction is based on the recent extension by Cai, Friedberg, Ginzburg and the author, of the classical doubling method of Piatetski-Shapiro and Rallis, from rank-$1$ twists to arbitrary rank twists. We prove a basic global identity for the integral and compute the local integrals with unramified data. Our global results are subject to certain conjectures, but when $k=1$ they are unconditional for all m. One possible future application of this work will be a Shimura-type lift of representations from covering groups to general linear groups. In a recent work, we used the present results in order to provide an analytic definition of local factors for representations of the m-fold covering of $\operatorname {\mathrm {Sp}}_{2n}$.
Let X be a smooth, projective and geometrically connected curve defined over a finite field ${\mathbb {F}}_q$ of characteristic p different from $2$ and $S\subseteq X$ a subset of closed points. Let $\overline {X}$ and $\overline {S}$ be their base changes to an algebraic closure of ${\mathbb {F}}_q$. We study the number of $\ell $-adic local systems $(\ell \neq p)$ in rank $2$ over $\overline {X}-\overline {S}$ with all possible prescribed tame local monodromies fixed by k-fold iterated action of Frobenius endomorphism for every $k\geq 1$. In all cases, we confirm conjectures of Deligne predicting that these numbers behave as if they were obtained from a Lefschetz fixed point formula. In fact, our counting results are expressed in terms of the numbers of some Higgs bundles.
In this article, we extend, with a great deal of generality, many results regarding the Hausdorff dimension of certain dynamical Diophantine coverings and shrinking target sets associated with a conformal iterated function system (IFS) previously established under the so-called open set condition. The novelty of the result we present is that it holds regardless of any separation assumption on the underlying IFS and thus extends to a large class of IFSs the previous results obtained by Beresnevitch and Velani [A mass transference principle and the Duffin–Schaeffer conjecture for Hausdorff measures. Ann. of Math. (2)164(3) (2006), 971–992] and by Barral and Seuret [The multifractal nature of heterogeneous sums of Dirac masses. Math. Proc. Cambridge Philos. Soc.144(3) (2008), 707–727]. Moreover, it will be established that if S is conformal and satisfies mild separation assumptions (which are, for instance, satisfied for any self-similar IFS on $\mathbb {R}$ with algebraic parameters, no exact overlaps and similarity dimension smaller than $1$), then the classical result of Hill–Velani regarding the shrinking target problem associated with a conformal IFS satisfying the open set condition (and for which the Hausdorff measure was later computed by Allen and Barany [On the Hausdorff measure of shrinking target sets on self-conformal sets. Mathematika67 (2021), 807–839]) can be extended.
Let $E/\mathbb {Q}$ be an elliptic curve and let p be a prime of good supersingular reduction. Attached to E are pairs of Iwasawa invariants $\mu _p^\pm $ and $\lambda _p^\pm $ which encode arithmetic properties of E along the cyclotomic $\mathbb {Z}_p$-extension of $\mathbb {Q}$. A well-known conjecture of B. Perrin-Riou and R. Pollack asserts that $\mu _p^\pm =0$. We provide support for this conjecture by proving that for any $\ell \geq 0$, we have $\mu _p^\pm \leq 1$ for all but finitely many primes p with $\lambda _p^\pm =\ell $. Assuming a recent conjecture of D. Kundu and A. Ray, our result implies that $\mu _p^\pm \leq 1$ holds on a density 1 set of good supersingular primes for E.
H. H. Chan, K. S. Chua and P. Solé [‘Quadratic iterations to $\pi $ associated to elliptic functions to the cubic and septic base’, Trans. Amer. Math. Soc.355(4) (2002), 1505–1520] found that, for each positive integer d, there are theta series $A_d, B_d$ and $C_d$ of weight one that satisfy the Pythagoras-like relationship $A_d^2=B_d^2+C_d^2$. In this article, we show that there are two collections of theta series $A_{b,d}, B_{b,d}$ and $C_{b,d}$ of weight one that satisfy $A_{b,d}^2=B_{b,d}^2+C_{b,d}^2,$ where b and d are certain integers.
We discuss, in a non-Archimedean setting, the distribution of the coefficients of L-polynomials of curves of genus g over $\mathbb{F}_q$. Among other results, this allows us to prove that the $\mathbb{Q}$-vector space spanned by such characteristic polynomials has dimension g + 1. We also state a conjecture about the Archimedean distribution of the number of rational points of curves over finite fields.