We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we study the twisted Ruelle zeta function associated with the geodesic flow of a compact, hyperbolic, odd-dimensional manifold X. The twisted Ruelle zeta function is associated with an acyclic representation $\chi \colon \pi _{1}(X) \rightarrow \operatorname {\mathrm {GL}}_{n}(\mathbb {C})$, which is close enough to an acyclic, unitary representation. In this case, the twisted Ruelle zeta function is regular at zero and equals the square of the refined analytic torsion, as it is introduced by Braverman and Kappeler in [6], multiplied by an exponential, which involves the eta invariant of the even part of the odd-signature operator, associated with $\chi $.
We introduce the L-series of weakly holomorphic modular forms using Laplace transforms and give their functional equations. We then determine converse theorems for vector-valued harmonic weak Maass forms, Jacobi forms, and elliptic modular forms of half-integral weight in Kohnen plus space.
We prove a general convergence result for zeta functions of prehomogeneous vector spaces extending results of H. Saito, F. Sato and Yukie. Our analysis points to certain subspaces which yield boundary terms. We study it further in the setup arising from nilpotent orbits. In certain cases we determine the residue at the rightmost pole of the zeta function.
We show that for any $\varepsilon>0$, the number of monic, reciprocal, length-$5$ integer polynomials that have house at least $1+\varepsilon $ is finite. The proof is algorithmic, and we are consequently able to compute a complete list (not imposing any bound on the degree) of small Mahler measures of length-$5$ polynomials that have house at least $1.01$.
For larger lengths, the analogous finiteness statement is false, as we show by examples. For length $6$ we show that if one also imposes an upper bound for the Mahler measure that is strictly below the smallest Pisot number $\theta = 1.32471\cdots $, and if the length $6$ polynomial is a cyclotomic multiple of an irreducible polynomial, then the number of polynomials with house at least $1+\varepsilon $ is finite.
We pursue these ideas to search opportunistically for small Mahler measures represented by longer polynomials. We find one new small measure.
We give an algorithm that finds all Salem numbers in an interval $[a,b]$ that are the Mahler measure of an integer polynomial of length at most $6$, provided $1<a \le b < \theta $.
Let C be a curve defined over a number field K and write g for the genus of C and J for the Jacobian of C. Let $n \ge 2$. We say that an algebraic point $P \in C(\overline {K})$ has degree n if the extension $K(P)/K$ has degree n. By the Galois group of P we mean the Galois group of the Galois closure of $K(P)/K$ which we identify as a transitive subgroup of $S_n$. We say that P is primitive if its Galois group is primitive as a subgroup of $S_n$. We prove the following ‘single source’ theorem for primitive points. Suppose $g>(n-1)^2$ if $n \ge 3$ and $g \ge 3$ if $n=2$. Suppose that either J is simple or that $J(K)$ is finite. Suppose C has infinitely many primitive degree n points. Then there is a degree n morphism $\varphi : C \rightarrow \mathbb {P}^1$ such that all but finitely many primitive degree n points correspond to fibres $\varphi ^{-1}(\alpha )$ with $\alpha \in \mathbb {P}^1(K)$.
We prove, moreover, under the same hypotheses, that if C has infinitely many degree n points with Galois group $S_n$ or $A_n$, then C has only finitely many degree n points of any other primitive Galois group.
We consider the relationship between the Mahler measure $M(f)$ of a polynomial f and its separation $\operatorname {sep}(f)$. Mahler [‘An inequality for the discriminant of a polynomial’, Michigan Math. J.11 (1964), 257–262] proved that if $f(x) \in \mathbb {Z}[x]$ is separable of degree n, then $\operatorname {sep}(f) \gg _n M(f)^{-(n-1)}$. This spurred further investigations into the implicit constant involved in that relationship and led to questions about the optimal exponent on $M(f)$. However, there has been relatively little study concerning upper bounds on $\operatorname {sep}(f)$ in terms of $M(f)$. We prove that if $f(x) \in \mathbb {C}[x]$ has degree n, then $\operatorname {sep}(f) \ll n^{-1/2}M(f)^{1/(n-1)}$. Moreover, this bound is sharp up to the implied constant factor. We further investigate the constant factor under various additional assumptions on $f(x)$; for example, if it has only real roots.
For an integer $k \geq 2$, let $P_{n}^{(k)}$ be the k-generalised Pell sequence, which starts with $0, \ldots ,0,1$ (k terms), and each term thereafter is given by the recurrence $P_{n}^{(k)} = 2 P_{n-1}^{(k)} +P_{n-2}^{(k)} +\cdots +P_{n-k}^{(k)}$. We search for perfect powers, which are sums or differences of two k-generalised Pell numbers.
Let X be a smooth projective variety defined over a number field K. We give an upper bound for the generalised greatest common divisor of a point $x\in X$ with respect to an irreducible subvariety $Y\subseteq X$ also defined over K. To prove the result, we establish a rather uniform Riemann–Roch-type inequality.
In his “lost notebook,” Ramanujan used iterated derivatives of two theta functions to define sequences of q-series $\{U_{2t}(q)\}$ and $\{V_{2t}(q)\}$ that he claimed to be quasimodular. We give the first explicit proof of this claim by expressing them in terms of “partition Eisenstein series,” extensions of the classical Eisenstein series $E_{2k}(q),$ defined by
For all t, we prove that $U_{2t}(q)=\operatorname {\mathrm {Tr}}_t(\phi _U;q)$ and $V_{2t}(q)=\operatorname {\mathrm {Tr}}_t(\phi _V;q),$ where $\phi _U$ and $\phi _V$ are natural partition weights, giving the first explicit quasimodular formulas for these series.
We prove an exact control theorem, in the sense of Hida theory, for the ordinary part of the middle degree étale cohomology of certain Hilbert modular varieties, after localizing at a suitable maximal ideal of the Hecke algebra. Our method of proof builds upon the techniques introduced by Loeffler–Rockwood–Zerbes (2023, Spherical varieties and p-adic families of cohomology classes); another important ingredient in our proof is the recent work of Caraiani–Tamiozzo (2023, Compositio Mathematica 159, 2279–2325) on the vanishing of the étale cohomology of Hilbert modular varieties with torsion coefficients outside the middle degree. This work will be used in forthcoming work of the author to show that the Asai–Flach Euler system corresponding to a quadratic Hilbert modular form varies in Hida families.
Let $E/\mathbb {Q}(T)$ be a nonisotrivial elliptic curve of rank r. A theorem due to Silverman [‘Heights and the specialization map for families of abelian varieties’, J. reine angew. Math.342 (1983), 197–211] implies that the rank $r_t$ of the specialisation $E_t/\mathbb {Q}$ is at least r for all but finitely many $t \in \mathbb {Q}$. Moreover, it is conjectured that $r_t \leq r+2$, except for a set of density $0$. When $E/\mathbb {Q}(T)$ has a torsion point of order $2$, under an assumption on the discriminant of a Weierstrass equation for $E/\mathbb {Q}(T)$, we produce an upper bound for $r_t$ that is valid for infinitely many t. We also present two examples of nonisotrivial elliptic curves $E/\mathbb {Q}(T)$ such that $r_t \leq r+1$ for infinitely many t.
Let G be a semiabelian variety defined over a finite subfield of an algebraically closed field K of prime characteristic. We describe the intersection of a subvariety X of G with a finitely generated subgroup of $G(K)$.
We prove several new congruences for the overcubic partition triples function, using both elementary techniques and the theory of modular forms. These extend the recent list of such congruences given by Nayaka, Dharmendra and Kumar [‘Divisibility properties for overcubic partition triples’, Integers24 (2024), Article no. a80, 9 pages]. We also generalise overcubic partition triples to overcubic partition k-tuples and prove arithmetic properties for these partitions.
In this article, we establish a function field analog of Jacobi’s theorem on sums of squares and analyze its moments. Our approach involves employing two distinct techniques to derive the main results concerning asymptotic formulas for the moments. The first technique utilizes Dirichlet series framework to derive asymptotic formulas in the limit of large finite fields, specifically when the characteristic of $\mathbb {F}_q[T]$ becomes large. The second technique involves effectively partitioning the set of polynomials of a fixed degree, providing asymptotic formulas in the limit of large polynomial degree.
In this article, we obtain a necessary and sufficient condition for the pseudo-nullity of the p-ramified Iwasawa module for p-adic Lie extensions of totally real fields. It is applied to answer the corresponding question for the minus component of the unramified Iwasawa module for CM-fields. The results show that the pseudo-nullity is very rare.
In this article, we generalize results of Clozel and Ray (for $SL_2$ and $SL_n$, respectively) to give explicit ring-theoretic presentation in terms of a complete set of generators and relations of the Iwasawa algebra of the pro-p Iwahori subgroup of a simple, simply connected, split group $\mathbf {G}$ over ${{\mathbb Q}_p}$.
We establish bounds for exponential sums twisted by generalized Möbius functions and their convolutions. As an application, we prove asymptotic formulas for certain weighted chromatic partitions by using the Hardy–Littlewood circle method. Lastly, we provide an explicit formula relating the contributions from the major arcs with a sum over the zeros of the Riemann zeta-function.
We establish the restricted sumset analog of the celebrated conjecture of Sárközy on additive decompositions of the set of nonzero squares over a finite field. More precisely, we show that if $q>13$ is an odd prime power, then the set of nonzero squares in $\mathbb {F}_q$ cannot be written as a restricted sumset $A \hat {+} A$, extending a result of Shkredov. More generally, we study restricted sumsets in multiplicative subgroups over finite fields as well as restricted sumsets in perfect powers (over integers) motivated by a question of Erdős and Moser. We also prove an analog of van Lint–MacWilliams’ conjecture for restricted sumsets, which appears to be the first analogue of Erdős--Ko–Rado theorem in a family of Cayley sum graphs.
Let $\overline {M}(a,c,n)$ denote the number of overpartitions of n with first residual crank congruent to a modulo c with $c\geq 3$ being odd and $0\leq a<c$. The central objective of this paper is twofold: firstly, to establish an asymptotic formula for the crank of overpartitions; and secondly, to establish several inequalities concerning $\overline {M}(a,c,n)$ that encompasses crank differences, positivity, and strict log-subadditivity.
We establish an effective improvement on the Liouville inequality for approximation to complex nonreal algebraic numbers by quadratic complex algebraic numbers.