To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider the relationship between the Mahler measure $M(f)$ of a polynomial f and its separation $\operatorname {sep}(f)$. Mahler [‘An inequality for the discriminant of a polynomial’, Michigan Math. J.11 (1964), 257–262] proved that if $f(x) \in \mathbb {Z}[x]$ is separable of degree n, then $\operatorname {sep}(f) \gg _n M(f)^{-(n-1)}$. This spurred further investigations into the implicit constant involved in that relationship and led to questions about the optimal exponent on $M(f)$. However, there has been relatively little study concerning upper bounds on $\operatorname {sep}(f)$ in terms of $M(f)$. We prove that if $f(x) \in \mathbb {C}[x]$ has degree n, then $\operatorname {sep}(f) \ll n^{-1/2}M(f)^{1/(n-1)}$. Moreover, this bound is sharp up to the implied constant factor. We further investigate the constant factor under various additional assumptions on $f(x)$; for example, if it has only real roots.
For an integer $k \geq 2$, let $P_{n}^{(k)}$ be the k-generalised Pell sequence, which starts with $0, \ldots ,0,1$ (k terms), and each term thereafter is given by the recurrence $P_{n}^{(k)} = 2 P_{n-1}^{(k)} +P_{n-2}^{(k)} +\cdots +P_{n-k}^{(k)}$. We search for perfect powers, which are sums or differences of two k-generalised Pell numbers.
Let X be a smooth projective variety defined over a number field K. We give an upper bound for the generalised greatest common divisor of a point $x\in X$ with respect to an irreducible subvariety $Y\subseteq X$ also defined over K. To prove the result, we establish a rather uniform Riemann–Roch-type inequality.
In his “lost notebook,” Ramanujan used iterated derivatives of two theta functions to define sequences of q-series $\{U_{2t}(q)\}$ and $\{V_{2t}(q)\}$ that he claimed to be quasimodular. We give the first explicit proof of this claim by expressing them in terms of “partition Eisenstein series,” extensions of the classical Eisenstein series $E_{2k}(q),$ defined by
For all t, we prove that $U_{2t}(q)=\operatorname {\mathrm {Tr}}_t(\phi _U;q)$ and $V_{2t}(q)=\operatorname {\mathrm {Tr}}_t(\phi _V;q),$ where $\phi _U$ and $\phi _V$ are natural partition weights, giving the first explicit quasimodular formulas for these series.
We prove an exact control theorem, in the sense of Hida theory, for the ordinary part of the middle degree étale cohomology of certain Hilbert modular varieties, after localizing at a suitable maximal ideal of the Hecke algebra. Our method of proof builds upon the techniques introduced by Loeffler–Rockwood–Zerbes (2023, Spherical varieties and p-adic families of cohomology classes); another important ingredient in our proof is the recent work of Caraiani–Tamiozzo (2023, Compositio Mathematica 159, 2279–2325) on the vanishing of the étale cohomology of Hilbert modular varieties with torsion coefficients outside the middle degree. This work will be used in forthcoming work of the author to show that the Asai–Flach Euler system corresponding to a quadratic Hilbert modular form varies in Hida families.
Let $E/\mathbb {Q}(T)$ be a nonisotrivial elliptic curve of rank r. A theorem due to Silverman [‘Heights and the specialization map for families of abelian varieties’, J. reine angew. Math.342 (1983), 197–211] implies that the rank $r_t$ of the specialisation $E_t/\mathbb {Q}$ is at least r for all but finitely many $t \in \mathbb {Q}$. Moreover, it is conjectured that $r_t \leq r+2$, except for a set of density $0$. When $E/\mathbb {Q}(T)$ has a torsion point of order $2$, under an assumption on the discriminant of a Weierstrass equation for $E/\mathbb {Q}(T)$, we produce an upper bound for $r_t$ that is valid for infinitely many t. We also present two examples of nonisotrivial elliptic curves $E/\mathbb {Q}(T)$ such that $r_t \leq r+1$ for infinitely many t.
Let G be a semiabelian variety defined over a finite subfield of an algebraically closed field K of prime characteristic. We describe the intersection of a subvariety X of G with a finitely generated subgroup of $G(K)$.
We prove several new congruences for the overcubic partition triples function, using both elementary techniques and the theory of modular forms. These extend the recent list of such congruences given by Nayaka, Dharmendra and Kumar [‘Divisibility properties for overcubic partition triples’, Integers24 (2024), Article no. a80, 9 pages]. We also generalise overcubic partition triples to overcubic partition k-tuples and prove arithmetic properties for these partitions.
In this article, we establish a function field analog of Jacobi’s theorem on sums of squares and analyze its moments. Our approach involves employing two distinct techniques to derive the main results concerning asymptotic formulas for the moments. The first technique utilizes Dirichlet series framework to derive asymptotic formulas in the limit of large finite fields, specifically when the characteristic of $\mathbb {F}_q[T]$ becomes large. The second technique involves effectively partitioning the set of polynomials of a fixed degree, providing asymptotic formulas in the limit of large polynomial degree.
In this article, we obtain a necessary and sufficient condition for the pseudo-nullity of the p-ramified Iwasawa module for p-adic Lie extensions of totally real fields. It is applied to answer the corresponding question for the minus component of the unramified Iwasawa module for CM-fields. The results show that the pseudo-nullity is very rare.
In this article, we generalize results of Clozel and Ray (for $SL_2$ and $SL_n$, respectively) to give explicit ring-theoretic presentation in terms of a complete set of generators and relations of the Iwasawa algebra of the pro-p Iwahori subgroup of a simple, simply connected, split group $\mathbf {G}$ over ${{\mathbb Q}_p}$.
We establish bounds for exponential sums twisted by generalized Möbius functions and their convolutions. As an application, we prove asymptotic formulas for certain weighted chromatic partitions by using the Hardy–Littlewood circle method. Lastly, we provide an explicit formula relating the contributions from the major arcs with a sum over the zeros of the Riemann zeta-function.
We establish the restricted sumset analog of the celebrated conjecture of Sárközy on additive decompositions of the set of nonzero squares over a finite field. More precisely, we show that if $q>13$ is an odd prime power, then the set of nonzero squares in $\mathbb {F}_q$ cannot be written as a restricted sumset $A \hat {+} A$, extending a result of Shkredov. More generally, we study restricted sumsets in multiplicative subgroups over finite fields as well as restricted sumsets in perfect powers (over integers) motivated by a question of Erdős and Moser. We also prove an analog of van Lint–MacWilliams’ conjecture for restricted sumsets, which appears to be the first analogue of Erdős--Ko–Rado theorem in a family of Cayley sum graphs.
Let $\overline {M}(a,c,n)$ denote the number of overpartitions of n with first residual crank congruent to a modulo c with $c\geq 3$ being odd and $0\leq a<c$. The central objective of this paper is twofold: firstly, to establish an asymptotic formula for the crank of overpartitions; and secondly, to establish several inequalities concerning $\overline {M}(a,c,n)$ that encompasses crank differences, positivity, and strict log-subadditivity.
We establish an effective improvement on the Liouville inequality for approximation to complex nonreal algebraic numbers by quadratic complex algebraic numbers.
In his proof of the irrationality of $\zeta (3)$ and $\zeta (2)$, Apéry defined two integer sequences through $3$-term recurrences, which are known as the famous Apéry numbers. Zagier, Almkvist–Zudilin, and Cooper successively introduced the other $13$ sporadic sequences through variants of Apéry’s $3$-term recurrences. All of the $15$ sporadic sequences are called Apéry-like sequences. Motivated by Gessel’s congruences mod $24$ for the Apéry numbers, we investigate congruences of the form $u_n\equiv \alpha ^n \ \pmod {N_{\alpha }}~(\alpha \in \mathbb {Z},N_{\alpha }\in \mathbb {N}^{+})$ for all of the $15$ Apéry-like sequences $\{u_n\}_{n\ge 0}$. Let $N_{\alpha }$ be the largest positive integer such that $u_n\equiv \alpha ^n\ \pmod {N_{\alpha }}$ for all non-negative integers n. We determine the values of $\max \{N_{\alpha }|\alpha \in \mathbb {Z}\}$ for all of the $15$ Apéry-like sequences $\{u_n\}_{n\ge 0}$. The binomial transforms of Apéry-like sequences provide us a unified approach to this type of congruences for Apéry-like sequences.
Without using the $p$-adic Langlands correspondence, we prove that for many finite-length smooth representations of $\mathrm {GL}_2(\mathbf {Q}_p)$ on $p$-torsion modules the $\mathrm {GL}_2(\mathbf {Q}_p)$-linear morphisms coincide with the morphisms that are linear for the normalizer of a parahoric subgroup. We identify this subgroup to be the Iwahori subgroup in the supersingular case, and $\mathrm {GL}_2(\mathbf {Z}_p)$ in the principal series case. As an application, we relate the action of parahoric subgroups to the action of the inertia group of $\mathrm {Gal}(\overline {\mathbf {Q}}_p/\mathbf {Q}_p)$, and we prove that if an irreducible Banach space representation $\Pi$ of $\mathrm {GL}_2(\mathbf {Q}_p)$ has infinite $\mathrm {GL}_2(\mathbf {Z}_p)$-length, then a twist of $\Pi$ has locally algebraic vectors. This answers a question of Dospinescu. We make the simplifying assumption that $p > 3$ and that all our representations are generic.
Given a self-morphism $\phi$ on a projective variety defined over a number field k, we prove two results which bound the largest iterate of $\phi$ whose evaluation at P is quasi-integral with respect to a divisor D, uniformly across P defined over a field of bounded degree over k. The first result applies when the pullback of D by some iterate of $\phi$ breaks up into enough irreducible components which are numerical multiples of each other. The proof uses Le’s algebraic-point version of a result of Ji–Yan–Yu, which is based on Schmidt subspace theorem. The second result applies more generally but relies on a deep conjecture by Vojta for algebraic points. The second result is an extension of a recent result of Matsuzawa, based on the theory of asymptotic multiplicity. Both results are generalisations of Hsia–Silverman, which treated the case of morphisms on ${\mathbb{P}}^1$.
We prove Chai's conjecture on the additivity of the base change conductor of semiabelian varieties in the case of Jacobians of proper curves. This includes the first infinite family of non-trivial wildly ramified examples. Along the way, we extend Raynaud's construction of the Néron lft-model of a Jacobian in terms of the Picard functor to arbitrary seminormal curves (beyond which Jacobians admit no Néron lft-models, as shown by our more general structural results). Finally, we investigate the structure of Jacobians of (not necessarily geometrically reduced) proper curves over fields of degree of imperfection at most one and prove two conjectures about the existence of Néron models and Néron lft-models due to Bosch–Lütkebohmert–Raynaud for Jacobians of general proper curves in the case of perfect residue fields, thus strengthening the author's previous results in this situation.
Let $b \geqslant 3$ be an integer and C(b, D) be the set of real numbers in [0,1] whose base b expansion only consists of digits in a set $D {\subseteq} \{0,...,b-1\}$. We study how close can numbers in C(b, D) be approximated by rational numbers with denominators being powers of some integer t and obtain a zero-full law for its Hausdorff measure in several circumstances. When b and t are multiplicatively dependent, our results correct an error of Levesley, Salp and Velani (Math. Ann.338 (2007), 97–118) and generalise their theorem. When b and t are multiplicatively independent but have the same prime divisors, we obtain a partial result on the Hausdorff measure and bounds for the Hausdorff dimension, which are close to the multiplicatively dependent case. Based on these results, several conjectures are proposed.