We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we study the universal lifting spaces of local Galois representations valued in arbitrary reductive group schemes when $\ell \neq p$. In particular, under certain technical conditions applicable to any root datum, we construct a canonical smooth component in such spaces, generalizing the minimally ramified deformation condition previously studied for classical groups. Our methods involve extending the notion of isotypic decomposition for a $\operatorname {\mathrm {GL}}_n$-valued representation to general reductive group schemes. To deal with certain scheme-theoretic issues coming from this notion, we are led to a detailed study of certain families of disconnected reductive groups, which we call weakly reductive group schemes. Our work can be used to produce geometric lifts for global Galois representations, and we illustrate this for $\mathrm {G}_2$-valued representations.
Let $P_1, \ldots , P_m \in \mathbb {K}[\mathrm {y}]$ be polynomials with distinct degrees, no constant terms and coefficients in a general local field $\mathbb {K}$. We give a quantitative count of the number of polynomial progressions $x, x+P_1(y), \ldots , x + P_m(y)$ lying in a set $S\subseteq \mathbb {K}$ of positive density. The proof relies on a general $L^{\infty }$ inverse theorem which is of independent interest. This inverse theorem implies a Sobolev improving estimate for multilinear polynomial averaging operators which in turn implies our quantitative estimate for polynomial progressions. This general Sobolev inequality has the potential to be applied in a number of problems in real, complex and p-adic analysis.
Let $[a_1(x),a_2(x),\ldots ,a_n(x),\ldots ]$ be the continued fraction expansion of $x\in [0,1)$ and $q_n(x)$ be the denominator of its nth convergent. The irrationality exponent and Khintchine exponent of x are respectively defined by
We study the multifractal spectrum of the irrationality exponent and the Khintchine exponent for continued fractions with nondecreasing partial quotients. For any $v>2$, we completely determine the Hausdorff dimensions of the sets $\{x\in [0,1): a_1(x)\leq a_2(x)\leq \cdots , \overline {v}(x)=v\}$ and
We establish new results on complex and $p$-adic linear independence on a class of semiabelian varieties. As applications, we obtain transcendence results concerning complex and $p$-adic Weierstrass sigma functions associated with elliptic curves.
Recently, Alanazi et al. [‘Refining overpartitions by properties of nonoverlined parts’, Contrib. Discrete Math.17(2) (2022), 96–111] considered overpartitions wherein the nonoverlined parts must be $\ell $-regular, that is, the nonoverlined parts cannot be divisible by the integer $\ell $. In the process, they proved a general parity result for the corresponding enumerating functions. They also proved some specific congruences for the case $\ell =3$. In this paper we use elementary generating function manipulations to significantly extend this set of known congruences for these functions.
Given a positive integer m, let $\mathbb {Z}_m$ be the set of residue classes mod m. For $A\subseteq \mathbb {Z}_m$ and $n\in \mathbb {Z}_m$, let $\sigma _A(n)$ be the number of solutions to the equation $n=x+y$ with $x,y\in A$. Let $\mathcal {H}_m$ be the set of subsets $A\subseteq \mathbb {Z}_m$ such that $\sigma _A(n)\geq 1$ for all $n\in \mathbb {Z}_m$. Let
Ding and Zhao [‘A new upper bound on Ruzsa’s numbers on the Erdős–Turán conjecture’, Int. J. Number Theory20 (2024), 1515–1523] showed that $\limsup _{m\rightarrow \infty }\ell _m\le 192$. We prove
To date, the bestmethodsfor estimating the growth of mean values of arithmetic functions rely on the Voronoï summation formula. By noticing a general pattern in the proof of his summation formula, Voronoï postulated that analogous summation formulas for $\sum a(n)f(n)$ can be obtained with ‘nice’ test functions f(n), provided a(n) is an ‘arithmetic function’. These arithmetic functions a(n) are called so because they are expected to appear as coefficients of some L-functions satisfying certain properties. It has been well-known that the functional equation for a general L-function can be used to derive a Voronoï-type summation identity for that L-function. In this article, we show that such a Voronoï-typesummation identity in fact endows the L-function with some structural properties, yielding in particular the functional equation. We do this by considering Dirichlet series satisfying functional equations involving multiple Gamma factors and show that a given arithmetic function appears as a coefficient of such a Dirichlet series if and only if it satisfies the aforementioned summation formulas.
Let G be a split connected reductive group defined over $\mathbb {Z}$. Let F and $F'$ be two non-Archimedean m-close local fields, where m is a positive integer. D. Kazhdan gave an isomorphism between the Hecke algebras $\mathrm {Kaz}_m^F :\mathcal {H}\big (G(F),K_F\big ) \rightarrow \mathcal {H}\big (G(F'),K_{F'}\big )$, where $K_F$ and $K_{F'}$ are the mth usual congruence subgroups of $G(F)$ and $G(F')$, respectively. On the other hand, if $\sigma $ is an automorphism of G of prime order l, then we have Brauer homomorphism $\mathrm {Br}:\mathcal {H}(G(F),U(F))\rightarrow \mathcal {H}(G^\sigma (F),U^\sigma (F))$, where $U(F)$ and $U^\sigma (F)$ are compact open subgroups of $G(F)$ and $G^\sigma (F),$ respectively. In this article, we study the compatibility between these two maps in the local base change setting. Further, an application of this compatibility is given in the context of linkage – which is the representation theoretic version of Brauer homomorphism.
We prove that any increasing sequence of real numbers with average gap $1$ and Poisson pair correlations has some gap that is at least $3/2+10^{-9}$. This improves upon a result of Aistleitner, Blomer, and Radziwiłł.
We prove the existence of a vector-valued cusp form for the full modular group for which the nth derivative of its L-function does not vanish under certain conditions. As an application, we generalize our result to Kohnen’s plus space and prove an analogous result for Jacobi forms.
We study density and partition properties of polynomial equations in prime variables. We consider equations of the form $a_1h(x_1) + \cdots + a_sh(x_s)=b$, where the ai and b are fixed coefficients and h is an arbitrary integer polynomial of degree d. We establish that the natural necessary conditions for this equation to have a monochromatic non-constant solution with respect to any finite colouring of the prime numbers are also sufficient when the equation has at least $(1+o(1))d^2$ variables. We similarly characterize when such equations admit solutions over any set of primes with positive relative upper density. In both cases, we obtain lower bounds for the number of monochromatic or dense solutions in primes that are of the correct order of magnitude. Our main new ingredient is a uniform lower bound on the cardinality of a prime polynomial Bohr set.
For $ \beta>1 $, let $ T_\beta $ be the $\beta $-transformation on $ [0,1) $. Let $ \beta _1,\ldots ,\beta _d>1 $ and let $ \mathcal P=\{P_n\}_{n\ge 1} $ be a sequence of parallelepipeds in $ [0,1)^d $. Define
When each $ P_n $ is a hyperrectangle with sides parallel to the axes, the ‘rectangle to rectangle’ mass transference principle by Wang and Wu [Mass transference principle from rectangles to rectangles in Diophantine approximation. Math. Ann.381 (2021) 243–317] is usually employed to derive the lower bound for $\dim _{\mathrm {H}} W(\mathcal P)$, where $\dim _{\mathrm {H}}$ denotes the Hausdorff dimension. However, in the case where $ P_n $ is still a hyperrectangle but with rotation, this principle, while still applicable, often fails to yield the desired lower bound. In this paper, we determine the optimal cover of parallelepipeds, thereby obtaining $\dim _{\mathrm {H}} W(\mathcal P)$. We also provide several examples to illustrate how the rotations of hyperrectangles affect $\dim _{\mathrm {H}} W(\mathcal P)$.
Erdös and Selfridge first showed that the product of consecutive integers cannot be a perfect power. Later, this result was generalized to polynomial values by various authors. They demonstrated that the product of consecutive polynomial values cannot be the perfect power for a suitable polynomial. In this article, we consider a related problem to the product of consecutive integers. We consider all sequences of polynomial values from a given interval whose products are almost perfect powers. We study the size of these powers and give an asymptotic result. We also define a group theoretic invariant, which is a natural generalization of the Davenport constant. We provide a non-trivial upper bound of this group theoretic invariant.
Let f and g be two distinct normalized primitive holomorphic cusp forms of even integral weight $k_{1}$ and $k_{2}$ for the full modular group $SL(2,\mathbb {Z})$, respectively. Suppose that $\lambda _{f\times f\times f}(n)$ and $\lambda _{g\times g\times g}(n)$ are the n-th Dirichlet coefficient of the triple product L-functions $L(s,f\times f\times f)$ and $L(s,g\times g\times g)$. In this paper, we consider the sign changes of the sequence $\{\lambda _{f\times f\times f}(n)\}_{n\geq 1}$ and $\{\lambda _{f\times f\times f}(n)\lambda _{g\times g\times g}(n)\}_{n\geq 1}$ in short intervals and establish quantitative results for the number of sign changes for $n \leq x$, which improve the previous results.
We give an explicit formula for the Frobenius number of triples associated with the Diophantine equation $x^2+y^2=z^3$, that is, the largest positive integer that can only be represented in p ways by combining the three integers of the solutions of $x^2+y^2=z^3$. For the equation $x^2+y^2=z^2$, the Frobenius number has already been given. Our approach can be extended to the general equation $x^2+y^2=z^r$ for $r>3$.
We prove a comparison theorem between Greenberg–Benois $\mathcal {L}$-invariants and Fontaine–Mazur $\mathcal {L}$-invariants. Such a comparison theorem supplies an affirmative answer to a speculation of Besser–de Shalit.
We study a certain class of arithmetic functions that appeared in Klurman’s classification of $\pm 1$ multiplicative functions with bounded partial sums; c.f., Comp. Math. 153(2017), 2017, no. 8, 1622–1657. These functions are periodic and $1$-pretentious. We prove that if $f_1$ and $f_2$ belong to this class, then $\sum _{n\leq x}(f_1\ast f_2)(n)=\Omega (x^{1/4})$. This confirms a conjecture by the first author. As a byproduct of our proof, we studied the correlation between $\Delta (x)$ and $\Delta (\theta x)$, where $\theta $ is a fixed real number. We prove that there is a nontrivial correlation when $\theta $ is rational, and a decorrelation when $\theta $ is irrational. Moreover, if $\theta $ has a finite irrationality measure, then we can make it quantitative this decorrelation in terms of this measure.
We study the exact Hausdorff and packing dimensions of the prime Cantor set, $\Lambda _P$, which comprises the irrationals whose continued fraction entries are prime numbers. We prove that the Hausdorff measure of the prime Cantor set cannot be finite and positive with respect to any sufficiently regular dimension function, thus negatively answering a question of Mauldin and Urbański (1999) and Mauldin (2013) for this class of dimension functions. By contrast, under a reasonable number-theoretic conjecture we prove that the packing measure of the conformal measure on the prime Cantor set is in fact positive and finite with respect to the dimension function $\psi (r) = r^\delta \log ^{-2\delta }\log (1/r)$, where $\delta $ is the dimension (conformal, Hausdorff, and packing) of the prime Cantor set.
We show that, for any prime p, there exist absolutely simple abelian varieties over $\mathbb {Q}$ with arbitrarily large p-torsion in their Tate-Shafarevich groups. To prove this, we construct explicit $\mu _p$-covers of Jacobians of curves of the form $y^p = x(x-1)(x-a)$ which violate the Hasse principle. In the appendix, Tom Fisher explains how to interpret our proof in terms of a Cassels-Tate pairing.