To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given an integer $k\ge 2$, let $\omega _k(n)$ denote the number of primes that divide n with multiplicity exactly k. We compute the density $e_{k,m}$ of those integers n for which $\omega _k(n)=m$ for every integer $m\ge 0$. We also show that the generating function $\sum _{m=0}^\infty e_{k,m}z^m$ is an entire function that can be written in the form $\prod _{p} \bigl (1+{(p-1)(z-1)}/{p^{k+1}} \bigr )$; from this representation we show how to both numerically calculate the $e_{k,m}$ to high precision and provide an asymptotic upper bound for the $e_{k,m}$. We further show how to generalize these results to all additive functions of the form $\sum _{j=2}^\infty a_j \omega _j(n)$; when $a_j=j-1$ this recovers a classical result of Rényi on the distribution of $\Omega (n)-\omega (n)$.
Ishitsuka et al. [‘Explicit calculation of the mod 4 Galois representation associated with the Fermat quartic’, Int. J. Number Theory16(4) (2020), 881–905] found all points on the Fermat quartic ${F_4\colon x^4+y^4=z^4}$ over quadratic extensions of ${\mathbb {Q}}(\zeta _8)$, where $\zeta _8$ is the eighth primitive root of unity $e^{i\pi /4}$. Using Mordell’s technique, we give an alternative proof for the result of Ishitsuka et al. and extend it to the rational function field ${\mathbb {Q}}({\zeta _8})(T_1,T_2,\ldots ,T_n)$.
We study the $\overline {\mathbb {F}}_{p}$-points of the Kisin–Pappas integral models of Shimura varieties of Hodge type with parahoric level. We show that if the group is quasi-split, then every isogeny class contains the reduction of a CM point, proving a conjecture of Kisin–Madapusi–Shin. We, furthermore, show that the mod p isogeny classes are of the form predicted by the Langlands–Rapoport conjecture (cf. Conjecture 9.2 of [Rap05]) if either the Shimura variety is proper or if the group at p is unramified. The main ingredient in our work is a global argument that allows us to reduce the conjecture to the case of very special parahoric level. This case is dealt with in the Appendix by Zhou. As a corollary to our arguments, we determine the connected components of Ekedahl–Oort strata.
For $E \subset \mathbb {N}$, a subset $R \subset \mathbb {N}$ is E-intersective if for every $A \subset E$ having positive relative density, $R \cap (A - A) \neq \varnothing $. We say that R is chromatically E-intersective if for every finite partition $E=\bigcup _{i=1}^k E_i$, there exists i such that $R\cap (E_i-E_i)\neq \varnothing $. When $E=\mathbb {N}$, we recover the usual notions of intersectivity and chromatic intersectivity. We investigate to what extent the known intersectivity results hold in the relative setting when $E = \mathbb {P}$, the set of primes, or other sparse subsets of $\mathbb {N}$. Among other things, we prove the following: (1) the set of shifted Chen primes $\mathbb {P}_{\mathrm {Chen}} + 1$ is both intersective and $\mathbb {P}$-intersective; (2) there exists an intersective set that is not $\mathbb {P}$-intersective; (3) every $\mathbb {P}$-intersective set is intersective; (4) there exists a chromatically $\mathbb {P}$-intersective set which is not intersective (and therefore not $\mathbb {P}$-intersective).
where $\langle \cdot \rangle $ denotes the distance from the nearest integral vector. In this article, we obtain upper bounds for the Hausdorff dimensions of the set of $\epsilon $-badly approximable matrices for fixed target b and the set of $\epsilon $-badly approximable targets for fixed matrix A. Moreover, we give a Diophantine condition of A equivalent to the full Hausdorff dimension of the set of $\epsilon $-badly approximable targets for fixed A. The upper bounds are established by effectivizing entropy rigidity in homogeneous dynamics, which is of independent interest. For the A-fixed case, our method also works for the weighted setting where the supremum norms are replaced by certain weighted quasinorms.
Let f(x) and g(x) be polynomials in $\mathbb F_{2}[x]$ with ${\rm deg}\text{ } f=n$. It is shown that for $n\gg 1$, there is an $g_{1}(x)\in \mathbb F_{2}[x]$ with ${\rm deg}\text{ } g_{1}\leqslant \max\{{\rm deg}\text{ } g, 6.7\log n\}$ and $g(x)-g_{1}(x)$ having $ \lt 6.7\log n$ terms such that $\gcd(f(x), g_{1}(x))=1$. As an application, it is established using a result of Dubickas and Sha that given $f(x)\in \mathbb F_{2}[x]$ of degree $n\geqslant 1$, there is a separable $g(x)\in 2[x]$ with ${\rm deg}\text{ } g= {\rm deg}\text{ } f$ and satisfying that $f(x)-g(x)$ has $\leqslant 6.7\log n$ terms. As a simple consequence, the latter result holds in $\mathbb Z[x]$ after replacing ‘number of terms’ by the L1-norm of a polynomial and $6.7\log n$ by $6.8\log n$. This improves the bound $(\log n)^{\log 4 +\operatorname{\varepsilon}}$ obtained by Filaseta and Moy.
Let $F$ be a totally real field in which $p$ is unramified and let $B$ be a quaternion algebra over $F$ which splits at at most one infinite place. Let $\overline {r}:\operatorname {{\mathrm {Gal}}}(\overline {F}/F)\rightarrow \mathrm {GL}_2(\overline {\mathbb {F}}_p)$ be a modular Galois representation which satisfies the Taylor–Wiles hypotheses. Assume that for some fixed place $v|p$, $B$ ramifies at $v$ and $F_v$ is isomorphic to $\mathbb {Q}_p$ and $\overline {r}$ is generic at $v$. We prove that the admissible smooth representations of the quaternion algebra over $\mathbb {Q}_p$ coming from mod $p$ cohomology of Shimura varieties associated to $B$ have Gelfand–Kirillov dimension $1$. As an application we prove that the degree-two Scholze's functor (which is defined by Scholze [On the$p$-adic cohomology of the Lubin–Tate tower, Ann. Sci. Éc. Norm. Supér. (4) 51 (2018), 811–863]) vanishes on generic supersingular representations of $\mathrm {GL}_2(\mathbb {Q}_p)$. We also prove some finer structure theorems about the image of Scholze's functor in the reducible case.
We introduce and study the notion of a generalised Hecke orbit in a Shimura variety. We define a height function on such an orbit and study its properties. We obtain lower bounds for the sizes of Galois orbits of points in a generalised Hecke orbit in terms of this height function, assuming the ‘weakly adelic Mumford–Tate hypothesis’ and prove the generalised André–Pink–Zannier conjecture under this assumption, using Pila–Zannier strategy.
In this paper, we give an explicit formula as well as a practical algorithm for computing the Cassels–Tate pairing on $\text{Sel}^{2}(J) \times \text{Sel}^{2}(J)$ where J is the Jacobian variety of a genus two curve under the assumption that all points in J[2] are K-rational. We also give an explicit formula for the Obstruction map $\text{Ob}: H^1(G_K, J[2]) \rightarrow \text{Br}(K)$ under the same assumption. Finally, we include a worked example demonstrating that we can improve the rank bound given by a 2-descent via computing the Cassels–Tate pairing.
We introduce a number field analogue of the Mertens conjecture and demonstrate its falsity for all but finitely many number fields of any given degree. We establish the existence of a logarithmic limiting distribution for the analogous Mertens function, expanding upon work of Ng. Finally, we explore properties of the generalised Mertens function of certain dicyclic number fields as consequences of Artin factorisation.
We study the counts of smooth permutations and smooth polynomials over finite fields. For both counts we prove an estimate with an error term that matches the error term found in the integer setting by de Bruijn more than 70 years ago. The main term is the usual Dickman $\rho$ function, but with its argument shifted.
We determine the order of magnitude of $\log(p_{n,m}/\rho(n/m))$ where $p_{n,m}$ is the probability that a permutation on n elements, chosen uniformly at random, is m-smooth.
We uncover a phase transition in the polynomial setting: the probability that a polynomial of degree n in $\mathbb{F}_q$ is m-smooth changes its behaviour at $m\approx (3/2)\log_q n$.
Compared with algebraic varieties the local monodromy of Drinfeld modules appears to be hopelessly complex: the image of the wild inertia subgroup under Tate module representations is infinite save for the case of potential good reduction. Nonetheless, we show that Tate modules of Drinfeld modules are ramified in a limited way: the image of a sufficiently deep ramification subgroup is trivial. This leads to a new invariant, the local conductor of a Drinfeld module. We establish an upper bound on the conductor in terms of the volume of the period lattice. As an intermediate step we develop a theory of normed lattices in function field arithmetic including the notion of volume. We relate normed lattices to vector bundles on projective curves. With the aid of Castelnuovo–Mumford regularity this implies a volume bound on norms of lattice generators, and the conductor inequality follows. Last but not least we describe the image of inertia for Drinfeld modules with period lattices of rank $1$. Just as in the theory of local $\ell$-adic Galois representations this image is commensurable with a commutative unipotent algebraic subgroup. However, in the case of Drinfeld modules such a subgroup can be a product of several copies of $\mathbf {G}_a$.
Using the special value at $u=1$ of Artin–Ihara L-functions, we associate to every $\mathbb {Z}$-cover of a finite connected graph a polynomial, which we call the Ihara polynomial. We show that the number of spanning trees for the finite intermediate graphs of such a cover can be expressed in terms of the Pierce–Lehmer sequence associated to a factor of the Ihara polynomial. This allows us to express the asymptotic growth of the number of spanning trees in terms of the Mahler measure of this polynomial. Specialising to the situation where the base graph is a bouquet or the dumbbell graph gives us back previous results in the literature for circulant and I-graphs (including the generalised Petersen graphs). We also express the p-adic valuation of the number of spanning trees of the finite intermediate graphs in terms of the p-adic Mahler measure of the Ihara polynomial. When applied to a particular $\mathbb {Z}$-cover, our result gives us back Lengyel’s calculation of the p-adic valuations of Fibonacci numbers.
Let $\mathbb {F}$ be a field and $(s_0,\ldots ,s_{n-1})$ be a finite sequence of elements of $\mathbb {F}$. In an earlier paper [G. H. Norton, ‘On the annihilator ideal of an inverse form’, J. Appl. Algebra Engrg. Comm. Comput.28 (2017), 31–78], we used the $\mathbb {F}[x,z]$ submodule $\mathbb {F}[x^{-1},z^{-1}]$ of Macaulay’s inverse system $\mathbb {F}[[x^{-1},z^{-1}]]$ (where z is our homogenising variable) to construct generating forms for the (homogeneous) annihilator ideal of $(s_0,\ldots ,s_{n-1})$. We also gave an $\mathcal {O}(n^2)$ algorithm to compute a special pair of generating forms of such an annihilator ideal. Here we apply this approach to the sequence r of the title. We obtain special forms generating the annihilator ideal for $(r_0,\ldots ,r_{n-1})$ without polynomial multiplication or division, so that the algorithm becomes linear. In particular, we obtain its linear complexities. We also give additional applications of this approach.
Multiples zeta values and alternating multiple zeta values in positive characteristic were introduced by Thakur and Harada as analogues of classical multiple zeta values of Euler and Euler sums. In this paper, we determine all linear relations between alternating multiple zeta values and settle the main goals of these theories. As a consequence, we completely establish Zagier–Hoffman’s conjectures in positive characteristic formulated by Todd and Thakur which predict the dimension and an explicit basis of the span of multiple zeta values of Thakur of fixed weight.
Let $\zeta _K(s)$ denote the Dedekind zeta-function associated to a number field K. We give an effective upper bound for the height of the first nontrivial zero other than $1/2$ of $\zeta _K(s)$ under the generalised Riemann hypothesis. This is a refinement of the earlier bound obtained by Sami [‘Majoration du premier zéro de la fonction zêta de Dedekind’, Acta Arith.99(1) (2000), 61–65].
We investigate the discrepancy between the distributions of the random variable $\log L (\sigma , f \times f, X)$ and that of $\log L(\sigma +it, f \times f)$, that is,
where the supremum is taken over rectangles $\mathcal {R}$ with sides parallel to the coordinate axes. For fixed $T>3$ and $2/3 <\sigma _0 < \sigma < 1$, we prove that
A monic polynomial $f(x)\in {\mathbb Z}[x]$ of degree N is called monogenic if $f(x)$ is irreducible over ${\mathbb Q}$ and $\{1,\theta ,\theta ^2,\ldots ,\theta ^{N-1}\}$ is a basis for the ring of integers of ${\mathbb Q}(\theta )$, where $f(\theta )=0$. We use the classification of the Galois groups of quartic polynomials, due to Kappe and Warren [‘An elementary test for the Galois group of a quartic polynomial’, Amer. Math. Monthly96(2) (1989), 133–137], to investigate the existence of infinite collections of monogenic quartic polynomials having a prescribed Galois group, such that each member of the collection generates a distinct quartic field. With the exception of the cyclic case, we provide such an infinite single-parameter collection for each possible Galois group. We believe these examples are new and we provide evidence to support this belief by showing that they are distinct from other infinite collections in the literature. Finally, we devote a separate section to the cyclic case.
For fixed m and a, we give an explicit description of those subsets of ${\mathbb F}_{q}$, q odd, for which both x and $mx+a$ are quadratic residues (and other combinations). These results extend and refine results that date back to Gauss.