To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we provide a characterization for a class of convex curves on the 3-sphere. More precisely, using a theorem that represents a locally convex curve on the 3-sphere as a pair of curves in $\mathbb S^2$, one of which is locally convexand the other is an immersion, we are able of completely characterizing a class of convex curves on the 3-sphere.
which is a one-dimensional Kirchhoff-like equation with a nonlocal convolution coefficient. The novelty of our work involves allowing a variable growth term in the nonlocal coefficient. By relating the variable growth problem to a constant growth problem, we are able to deduce the existence of at least one positive solution to the differential equation when equipped with boundary data. Our methodology relies on topological fixed point theory. Because our results treat both the convex and concave regimes, together with both the variable growth and constant growth regimes, our results provide a unified framework for one-dimensional Kirchhoff-type problems.
Based on the topological degree theory, we present some atypical bifurcation results in the sense of Prodi–Ambrosetti, i.e., bifurcation of T-periodic solutions from λ = 0. Finally, we propose some applications to Liénard-type equations.
Dedicated to Professor Maria Patrizia Pera on the occasion of her 70th birthday
where $\phi(y)={y}/{\sqrt{1- |y|^2}}$ and $j:\mathbb{R}^N \times \mathbb{R}^N \rightarrow (-\infty, +\infty]$ is convex and lower semicontinuous. Making use of the variational approach introduced in the recent paper “Potential systems with singular $\phi$-Laplacian”, we obtain multiplicity of solutions when the action functional is even, as well as existence of multiple geometrically distinct solutions when this functional is invariant with respect to some discrete group.
We obtain a system of identities relating boundary coefficients and spectral data for the one-dimensional Schrödinger equation with boundary conditions containing rational Herglotz–Nevanlinna functions of the eigenvalue parameter. These identities can be thought of as a kind of mini version of the Gelfand–Levitan integral equation for boundary coefficients only.
We present a closed-form solution to a discounted optimal stopping zero-sum game in a model based on a generalised geometric Brownian motion with coefficients depending on its running maximum and minimum processes. The optimal stopping times forming a Nash equilibrium are shown to be the first times at which the original process hits certain boundaries depending on the running values of the associated maximum and minimum processes. The proof is based on the reduction of the original game to the equivalent coupled free-boundary problem and the solution of the latter problem by means of the smooth-fit and normal-reflection conditions. We show that the optimal stopping boundaries are partially determined as either unique solutions to the appropriate system of arithmetic equations or unique solutions to the appropriate first-order nonlinear ordinary differential equations. The results obtained are related to the valuation of the perpetual lookback game options with floating strikes in the appropriate diffusion-type extension of the Black–Merton–Scholes model.
In loving memory of my beloved miniature dachshund Maddie (16 March 2002 – 16 March 2020). We consider nonlocal differential equations with convolution coefficients of the form
in the case in which $g$ can satisfy very generalized growth conditions; in addition, $M$ is allowed to be both sign-changing and vanishing. Existence of at least one positive solution to this equation equipped with boundary data is considered. We demonstrate that the nonlocal coefficient $M$ allows the forcing term $f$ to be free of almost all assumptions other than continuity.
The present paper is concerned with the infimum of the norm of potentials for Sturm–Liouville eigenvalue problems with Dirichlet boundary condition such that the first two eigenvalues are known. The explicit quantity of the infimum is given by the two eigenvalues.
The present paper deals with the non-real eigenvalues for singular indefinite Sturm–Liouville problems. The lower bounds on non-real eigenvalues for this singular problem associated with a special separated boundary condition are obtained.
We establish asymptotic formulas for all the eigenvalues of the linearization problem of the Neumann problem for the scalar field equation in a finite interval
In the previous paper of the third author [T. Wakasa and S. Yotsutani, J. Differ. Equ. 258 (2015), 3960–4006] asymptotic formulas for the Allen–Cahn case $\varepsilon ^2u_{xx}+u-u^3=0$ were established. In this paper, we apply the method developed in the previous paper to our case. We show that all the eigenvalues can be classified into three categories, i.e., near $-3$ eigenvalues, near $0$ eigenvalues and the other eigenvalues. We see that the number of the near $-3$ eigenvalues (resp. the near $0$ eigenvalues) is equal to the number of the interior and boundary peaks (resp. the interior peaks) of a solution for the nonlinear problem. The main technical tools are various asymptotic formulas for complete elliptic integrals.
This paper is concerned with singular matrix difference equations of mixed order. The existence and uniqueness of initial value problems for these equations are derived, and then the classification of them is obtained with a similar classical Weyl's method by selecting a suitable quasi-difference. An equivalent characterization of this classification is given in terms of the number of linearly independent square summable solutions of the equation. The influence of off-diagonal coefficients on the classification is illustrated by two examples. In particular, two limit point criteria are established in terms of coefficients of the equation.
This paper consists of three parts: First, letting $b_1(z)$, $b_2(z)$, $p_1(z)$ and $p_2(z)$ be nonzero polynomials such that $p_1(z)$ and $p_2(z)$ have the same degree $k\geq 1$ and distinct leading coefficients $1$ and $\alpha$, respectively, we solve entire solutions of the Tumura–Clunie type differential equation $f^{n}+P(z,\,f)=b_1(z)e^{p_1(z)}+b_2(z)e^{p_2(z)}$, where $n\geq 2$ is an integer, $P(z,\,f)$ is a differential polynomial in $f$ of degree $\leq n-1$ with coefficients having polynomial growth. Second, we study the oscillation of the second-order differential equation $f''-[b_1(z)e^{p_1(z)}+b_2(z)e^{p_2(z)}]f=0$ and prove that $\alpha =[2(m+1)-1]/[2(m+1)]$ for some integer $m\geq 0$ if this equation admits a nontrivial solution such that $\lambda (f)<\infty$. This partially answers a question of Ishizaki. Finally, letting $b_2\not =0$ and $b_3$ be constants and $l$ and $s$ be relatively prime integers such that $l> s\geq 1$, we prove that $l=2$ if the equation $f''-(e^{lz}+b_2e^{sz}+b_3)f=0$ admits two linearly independent solutions $f_1$ and $f_2$ such that $\max \{\lambda (f_1),\,\lambda (f_2)\}<\infty$. In particular, we precisely characterize all solutions such that $\lambda (f)<\infty$ when $l=2$ and $l=4$.
In this contribution, we present a modelling and simulation framework for parametrised lithium-ion battery cells. We first derive a continuum model for a rather general intercalation battery cell on the basis of non-equilibrium thermodynamics. In order to efficiently evaluate the resulting parameterised non-linear system of partial differential equations, the reduced basis method is employed. The reduced basis method is a model order reduction technique on the basis of an incremental hierarchical approximate proper orthogonal decomposition approach and empirical operator interpolation. The modelling framework is particularly well suited to investigate and quantify degradation effects of battery cells. Several numerical experiments are given to demonstrate the scope and efficiency of the modelling framework.
In this paper, we study the Friedrichs extensions of Sturm–Liouville operators with complex coefficients according to the classification of B. M. Brown et al. [3]. We characterize the Friedrichs extensions both by boundary conditions at regular endpoint and asymptotic behaviours of elements in the maximal operator domains at singular endpoint. Some of spectral properties are also involved.
We show that all self-adjoint extensions of semibounded Sturm–Liouville operators with limit-circle endpoint(s) can be obtained via an additive singular form-bounded self-adjoint perturbation of rank equal to the deficiency indices, say $d\in \{1,2\}$. This characterization generalizes the well-known analog for semibounded Sturm–Liouville operators with regular endpoints. Explicitly, every self-adjoint extension of the minimal operator can be written as
where $\boldsymbol {A}_0$ is a distinguished self-adjoint extension and $\Theta $ is a self-adjoint linear relation in $\mathbb {C}^d$. The perturbation is singular in the sense that it does not belong to the underlying Hilbert space but is form-bounded with respect to $\boldsymbol {A}_0$, i.e., it belongs to $\mathcal {H}_{-1}(\boldsymbol {A}_0)$, with possible “infinite coupling.” A boundary triple and compatible boundary pair for the symmetric operator are constructed to ensure that the perturbation is well defined and self-adjoint extensions are in a one-to-one correspondence with self-adjoint relations $\Theta $.
The merging of boundary triples with perturbation theory provides a more holistic view of the operator’s matrix-valued spectral measures: identifying not just the location of the spectrum, but also certain directional information.
As an example, self-adjoint extensions of the classical Jacobi differential equation (which has two limit-circle endpoints) are obtained, and their spectra are analyzed with tools both from the theory of boundary triples and perturbation theory.
We consider steady states with mass constraint of the fourth-order thin-film equation with van der Waals force in a bounded domain which leads to a singular elliptic equation for the thickness with an unknown pressure term. By studying second-order nonlinear ordinary differential equation,
we prove the existence of infinitely many radially symmetric solutions. Also, we perform rigorous asymptotic analysis to identify the blow-up limit when the steady state is close to a constant solution and the blow-down limit when the maximum of the steady state goes to the infinity.
We develop a new analytical solution of a three-dimensional atmospheric pollutant dispersion. The main idea is to subdivide vertically the planetary boundary layer into sub-layers, where the wind speed and eddy diffusivity assume average values for each sub-layer. Basically, the model is assessed and validated using data obtained from the Copenhagen diffusion and Prairie Grass experiments. Our findings show that there is a good agreement between the predicted and observed crosswind-integrated concentrations. Moreover, the calculated statistical indices are within the range of acceptable model performance.
In this paper, we characterize jump phenomena of the $n$-th eigenvalue of self-adjoint discrete Sturm–Liouville problems in any dimension. For a fixed Sturm–Liouville equation, we completely characterize jump phenomena of the $n$-th eigenvalue. For a fixed boundary condition, unlike in the continuous case, the $n$-th eigenvalue exhibits jump phenomena and we describe the singularity under a non-degenerate assumption. Compared with the continuous case in Hu et al. (2019, J. Differ. Equ.266, 4106–4136) and Kong et al. (1999, J. Differ. Equ.156, 328–354), the jump set here is involved with coefficients of the Sturm–Liouville equations. This, along with arbitrariness of the dimension, causes difficulty when dividing the jump areas. We study the singularity by partitioning and analysing the local coordinate systems, and provide a Hermitian matrix which can determine the areas’ division. To prove the asymptotic behaviour of the $n$-th eigenvalue, we generalize the method developed in Zhu and Shi (2016, J. Differ. Equ.260, 5987–6016) to any dimension. As an application, by transforming the continuous Sturm–Liouville problem of Atkinson type to a discrete one, we determine the number of eigenvalues and obtain complete characterization of jump phenomena of the $n$-th eigenvalue for the Atkinson type.
This paper aims to investigate the existence of periodic solutions for $p$-Laplacian differential equations with jumping nonlinearity under the frame of half-eigenvalue. Based on the continuity theorem, some new results are obtained, which enrich and generalize the previous results.