We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let E and D be open subsets of
$\mathbb {R}^{n+1}$
such that
$\overline {D}$
is a compact subset of E, and let v be a supertemperature on E. A temperature u on D is called extendable by v if there is a supertemperature w on E such that
$w=u$
on D and
$w=v$
on
$E\backslash \overline D$
. From earlier work of N. A. Watson, [‘Extendable temperatures’, Bull. Aust. Math. Soc.100 (2019), 297–303], either there is a unique temperature extendable by v, or there are infinitely many; a necessary condition for uniqueness is that the generalised solution of the Dirichlet problem on D corresponding to the restriction of v to
$\partial _eD$
is equal to the greatest thermic minorant of v on D. In this paper we first give a condition for nonuniqueness and an example to show that this necessary condition is not sufficient. We then give a uniqueness theorem involving the thermal and cothermal fine topologies and deduce a corollary involving only parabolic and coparabolic tusks.
In the present paper, we first introduce the concepts of the Lpq-capacity measure and Lp mixed q-capacity and then prove some geometric properties of Lpq-capacity measure and a Lp Minkowski inequality for the q-capacity for any fixed p ⩾ 1 and q > n. As an application of the Lp Minkowski inequality mentioned above, we establish a Hadamard variational formula for the q-capacity under p-sum for any fixed p ⩾ 1 and q > n, which extends results of Akman et al. (Adv. Calc. Var. (in press)). With the Hadamard variational formula, variational method and Lp Minkowski inequality mentioned above, we prove the existence and uniqueness of the solution for the Lp Minkowski problem for the q-capacity which extends some beautiful results of Jerison (1996, Acta Math.176, 1–47), Colesanti et al. (2015, Adv. Math.285, 1511–588), Akman et al. (Mem. Amer. Math. Soc. (in press)) and Akman et al. (Adv. Calc. Var. (in press)). It is worth mentioning that our proof of Hadamard variational formula is based on Lp Minkowski inequality rather than the direct argument which was adopted by Akman (Adv. Calc. Var. (in press)). Moreover, as a consequence of Lp Minkowski inequality for q-capacity, we get an interesting isoperimetric inequality for q-capacity.
We show that condenser capacity varies continuously under holomorphic motions, and the corresponding family of the equilibrium measures of the condensers is continuous with respect to the weak-star convergence. We also study the behavior of uniformly perfect sets under holomorphic motions.
As a result of field fringing, the capacitance of a parallel-plate capacitor differs from that predicted by the textbook formula. Using singular perturbations and conformal mapping techniques, we calculate the leading-order correction to the capacitance in the limit of large aspect ratio. We additionally obtain a comparable approximation for the electrostatic attraction between the plates.
In this paper we study a class ${\mathcal{Z}}_{H}$ of harmonic mappings on the open unit disk $\mathbb{D}$ in the complex plane that is an extension of the classical (analytic) Zygmund space. We extend to the elements of this class a characterisation that is valid in the analytic case. We also provide a similar result for a closed separable subspace of ${\mathcal{Z}}_{H}$ which we call the little harmonic Zygmund space.
The range of a trigonometric polynomial with complex coefficients can be interpreted as the image of the unit circle under a Laurent polynomial. We show that this range is contained in a real algebraic subset of the complex plane. Although the containment may be proper, the difference between the two sets is finite, except for polynomials with a certain symmetry.
Assume that $\unicode[STIX]{x1D6FA}$ and $D$ are two domains with compact smooth boundaries in the extended complex plane $\overline{\mathbf{C}}$. We prove that every quasiconformal mapping between $\unicode[STIX]{x1D6FA}$ and $D$ mapping $\infty$ onto itself is bi-Lipschitz continuous with respect to both the Euclidean and Riemannian metrics.
In 1993, N. Danikas and A. G. Siskakis showed that the Cesàro operator ${\mathcal{C}}$ is not bounded on $H^{\infty }$; that is, ${\mathcal{C}}(H^{\infty })\nsubseteq H^{\infty }$, but ${\mathcal{C}}(H^{\infty })$ is a subset of $BMOA$. In 1997, M. Essén and J. Xiao gave that ${\mathcal{C}}(H^{\infty })\subsetneq {\mathcal{Q}}_{p}$ for every $0<p<1$. In this paper, we characterize positive Borel measures $\unicode[STIX]{x1D707}$ such that ${\mathcal{C}}(H^{\infty })\subseteq M({\mathcal{D}}_{\unicode[STIX]{x1D707}})$ and show that ${\mathcal{C}}(H^{\infty })\subsetneq M({\mathcal{D}}_{\unicode[STIX]{x1D707}_{0}})\subsetneq \bigcap _{0<p<\infty }{\mathcal{Q}}_{p}$ by constructing some measures $\unicode[STIX]{x1D707}_{0}$. Here, $M({\mathcal{D}}_{\unicode[STIX]{x1D707}})$ denotes the Möbius invariant function space generated by ${\mathcal{D}}_{\unicode[STIX]{x1D707}}$, where ${\mathcal{D}}_{\unicode[STIX]{x1D707}}$ is a Dirichlet space with superharmonic weight induced by a positive Borel measure $\unicode[STIX]{x1D707}$ on the open unit disk. Our conclusions improve results mentioned above.
Let $D\subset \mathbb{C}$ be a domain with $0\in D$. For $R>0$, let $\widehat{\unicode[STIX]{x1D714}}_{D}(R)$ denote the harmonic measure of $D\cap \{|z|=R\}$ at $0$ with respect to the domain $D\cap \{|z|<R\}$ and let $\unicode[STIX]{x1D714}_{D}(R)$ denote the harmonic measure of $\unicode[STIX]{x2202}D\cap \{|z|\geqslant R\}$ at $0$ with respect to $D$. The behavior of the functions $\unicode[STIX]{x1D714}_{D}$ and $\widehat{\unicode[STIX]{x1D714}}_{D}$ near $\infty$ determines (in some sense) how large $D$ is. However, it is not known whether the functions $\unicode[STIX]{x1D714}_{D}$ and $\widehat{\unicode[STIX]{x1D714}}_{D}$ always have the same behavior when $R$ tends to $\infty$. Obviously, $\unicode[STIX]{x1D714}_{D}(R)\leqslant \widehat{\unicode[STIX]{x1D714}}_{D}(R)$ for every $R>0$. Thus, the arising question, first posed by Betsakos, is the following: Does there exist a positive constant $C$ such that for all simply connected domains $D$ with $0\in D$ and all $R>0$,
In general, we prove that the answer is negative by means of two different counter-examples. However, under additional assumptions involving the geometry of $D$, we prove that the answer is positive. We also find the value of the optimal constant for starlike domains.
In this paper, we prove several new Hardy type inequalities (such as the weighted Hardy inequality, weighted Rellich inequality, critical Hardy inequality and critical Rellich inequality) related to the radial derivation (i.e., the derivation along the geodesic curves) on the Cartan–Hadamard manifolds. By Gauss lemma, our new Hardy inequalities are stronger than the classical ones. We also establish the improvements of these inequalities in terms of sectional curvature of the underlying manifolds which illustrate the effect of curvature to these inequalities. Furthermore, we obtain some improvements of Hardy and Rellich inequalities on the hyperbolic space ℍn. Especially, we show that our new Rellich inequalities are indeed stronger than the classical ones on the hyperbolic space ℍn.
We give an equality condition for a symmetrization inequality for condensers proved by F.W. Gehring regarding elliptic areas. We then use this to obtain a monotonicity result involving the elliptic area of the image of a holomorphic function f.
We consider a nonlinear Robin problem for the Poisson equation in an unbounded periodically perforated domain. The domain has a periodic structure, and the size of each cell is determined by a positive parameter δ. The relative size of each periodic perforation is determined by a positive parameter ε. Under suitable assumptions, such a problem admits a family of solutions which depends on ε and δ. We analyse the behaviour the energy integral of such a family as (ε, δ) tends to (0, 0) by an approach that represents an alternative to asymptotic expansions and classical homogenization theory.
In this paper we characterize the boundedness on the product of Sobolev spaces Hs(𝕋) × Hs(𝕋) on the unit circle 𝕋, of the bilinear form Λb with symbol b ∈ Hs(𝕋) given by
Let $E$ and $D$ be open subsets of $\mathbb{R}^{n+1}$ such that $\overline{D}$ is a compact subset of $E$, and let $v$ be a supertemperature on $E$. We call a temperature $u$ on $D$extendable by$v$ if there is a supertemperature $w$ on $E$ such that $w=u$ on $D$ and $w=v$ on $E\backslash \overline{D}$. Such a temperature need not be a thermic minorant of $v$ on $D$. We show that either there is a unique temperature extendable by $v$, or there are infinitely many. Examples of temperatures extendable by $v$ include the greatest thermic minorant $GM_{v}^{D}$ of $v$ on $D$, and the Perron–Wiener–Brelot solution of the Dirichlet problem $S\!_{v}^{D}$ on $D$ with boundary values the restriction of $v$ to $\unicode[STIX]{x2202}D$. In the case where these two examples are distinct, we give a formula for producing infinitely many more. Clearly $GM_{v}^{D}$ is the greatest extendable thermic minorant, but we also prove that there is a least one, which is not necessarily equal to $S\!_{v}^{D}$.
We prove optimal improvements of the Hardy inequality on the hyperbolic space. Here, optimal means that the resulting operator is critical in the sense of Devyver, Fraas, and Pinchover (2014), namely the associated inequality cannot be further improved. Such inequalities arise from more general, optimal ones valid for the operator $ P_{\lambda }:= -\Delta _{{\open H}^{N}} - \lambda $ where 0 ⩽ λ ⩽ λ1(ℍN) and λ1(ℍN) is the bottom of the L2 spectrum of $-\Delta _{{\open H}^{N}} $, a problem that had been studied in Berchio, Ganguly, and Grillo (2017) only for the operator $P_{\lambda _{1}({\open H}^{N})}$. A different, critical and new inequality on ℍN, locally of Hardy type is also shown. Such results have in fact greater generality since they are proved on general Cartan-Hadamard manifolds under curvature assumptions, possibly depending on the point. Existence/nonexistence of extremals for the related Hardy-Poincaré inequalities are also proved using concentration-compactness technique and a Liouville comparison theorem. As applications of our inequalities, we obtain an improved Rellich inequality and we derive a quantitative version of Heisenberg-Pauli-Weyl uncertainty principle for the operator $P_\lambda.$
We consider a second-order elliptic operator L in skew product of an ordinary differential operator L1 on an interval (a, b) and an elliptic operator on a domain D2 of a Riemannian manifold such that the associated heat kernel is intrinsically ultracontractive. We give criteria for criticality and subcriticality of L in terms of a positive solution having minimal growth at η (η = a, b) to an associated ordinary differential equation. In the subcritical case, we explicitly determine the Martin compactification and Martin kernel for L on the basis of [24]; in particular, the Martin boundary over η is either one point or a compactification of D2, which depends on whether an associated integral near η diverges or converges. From this structure theorem we show a monotonicity property that the Martin boundary over η does not become smaller as the potential term of L1 becomes larger near η.
We prove that every entire solution of the minimal graph equation that is bounded from below and has at most linear growth must be constant on a complete Riemannian manifold M with only one end if M has asymptotically non-negative sectional curvature. On the other hand, we prove the existence of bounded non-constant minimal graphic and p-harmonic functions on rotationally symmetric Cartan-Hadamard manifolds under optimal assumptions on the sectional curvatures.
We solve a problem posed by Blasco, Bonilla and Grosse-Erdmann in 2010 by constructing a harmonic function on ℝN, that is frequently hypercyclic with respect to the partial differentiation operator ∂/∂xk and which has a minimal growth rate in terms of the average L2-norm on spheres of radius r > 0 as r → ∞.
We study the geometry of the component of the origin in the uniform spanning forest of $\mathbb{Z}^{d}$ and give bounds on the size of balls in the intrinsic metric.