We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For a collection of objects such as socks, which can be matched according to a characteristic such as color, we study the innocent phrase ‘the distribution of the color of a matching pair’ by looking at two methods for selecting socks. One method is memoryless and effectively samples socks with replacement, while the other samples socks sequentially, with memory, until the same color has been seen twice. We prove that these two methods yield the same distribution on colors if and only if the initial distribution of colors is a uniform distribution. We conjecture a nontrivial maximum value for the total variation distance of these distributions in all other cases.
In this paper we study in complete generality the family of two-state, deterministic, monotone, local, homogeneous cellular automata in $\mathbb{Z}$d with random initial configurations. Formally, we are given a set $\mathcal{U}$ = {X1,. . . , Xm} of finite subsets of $\mathbb{Z}$d \ {0}, and an initial set A0 ⊂ $\mathbb{Z}$d of ‘infected’ sites, which we take to be random according to the product measure with density p. At time t ∈ $\mathbb{N}$, the set of infected sites At is the union of At-1 and the set of all x ∈ $\mathbb{Z}$d such that x + X ∈ At-1 for some X ∈ $\mathcal{U}$. Our model may alternatively be thought of as bootstrap percolation on $\mathbb{Z}$d with arbitrary update rules, and for this reason we call it $\mathcal{U}$-bootstrap percolation.
In two dimensions, we give a classification of $\mathcal{U}$-bootstrap percolation models into three classes – supercritical, critical and subcritical – and we prove results about the phase transitions of all models belonging to the first two of these classes. More precisely, we show that the critical probability for percolation on ($\mathbb{Z}$/n$\mathbb{Z}$)2 is (log n)−Θ(1) for all models in the critical class, and that it is n−Θ(1) for all models in the supercritical class.
The results in this paper are the first of any kind on bootstrap percolation considered in this level of generality, and in particular they are the first that make no assumptions of symmetry. It is the hope of the authors that this work will initiate a new, unified theory of bootstrap percolation on $\mathbb{Z}$d.
Λ-coalescents model the evolution of a coalescing system in which any number of components randomly sampled from the whole may merge into larger blocks. This survey focuses on related combinatorial constructions and the large-sample behaviour of the functionals which characterize in some way the speed of coalescence.
We establish a connection between epidemic models on random networks with general infection times considered in Barbour and Reinert (2013) and first passage percolation. Using techniques developed in Bhamidi, van der Hofstad and Hooghiemstra (2012), when each vertex has infinite contagious periods, we extend results on the epidemic curve in Barbour and Reinert (2013) from bounded degree graphs to general sparse random graphs with degrees having finite second moments as n → ∞, with an appropriate X2log+X condition. We also study the epidemic trail between the source and typical vertices in the graph.
Motivated by the analysis of social networks, we study a model of random networks that has both a given degree distribution and a tunable clustering coefficient. We consider two types of growth process on these graphs that model the spread of new ideas, technologies, viruses, or worms: the diffusion model and the symmetric threshold model. For both models, we characterize conditions under which global cascades are possible and compute their size explicitly, as a function of the degree distribution and the clustering coefficient. Our results are applied to regular or power-law graphs with exponential cutoff and shed new light on the impact of clustering.
This paper studies a special type of binomial splitting process. Such a process can be used to model a high dimensional corner parking problem as well as determining the depth of random PATRICIA (practical algorithm to retrieve information coded in alphanumeric) tries, which are a special class of digital tree data structures. The latter also has natural interpretations in terms of distinct values in independent and identically distributed geometric random variables and the occupancy problem in urn models. The corresponding distribution is marked by a logarithmic mean and a bounded variance, which is oscillating, if the binomial parameter p is not equal to ½, and asymptotic to one in the unbiased case. Also, the limiting distribution does not exist as a result of the periodic fluctuations.
The probability h(n, m) that the block counting process of the Bolthausen-Sznitman n-coalescent ever visits the state m is analyzed. It is shown that the asymptotic hitting probabilities h(m) = limn→∞h(n, m), m ∈ N, exist and an integral formula for h(m) is provided. The proof is based on generating functions and exploits a certain convolution property of the Bolthausen-Sznitman coalescent. It follows that h(m) ∼ 1/log m as m → ∞. An application to linear recursions is indicated.
Consider a random multigraph G* with given vertex degrees d1,…, dn, constructed by the configuration model. We give a new proof of the fact that, asymptotically for a sequence of such multigraphs with the number of edges the probability that the multigraph is simple stays away from 0 if and only if The new proof uses the method of moments, which makes it possible to use it in some applications concerning convergence in distribution. Corresponding results for bipartite graphs are included.
In this article we show the asymptotics of distribution and moments of the size Xn of the minimal clade of a randomly chosen individual in a Bolthausen-Sznitman n-coalescent for n → ∞. The Bolthausen-Sznitman n-coalescent is a Markov process taking states in the set of partitions of {1, …, n}, where 1, …, n are referred to as individuals. The minimal clade of an individual is the equivalence class the individual is in at the time of the first coalescence event this individual participates in. We also provide exact formulae for the distribution of Xn. The main tool used is the connection of the Bolthausen-Sznitman n-coalescent with random recursive trees introduced by Goldschmidt and Martin (2005). With it, we show that Xn - 1 is distributed as the size of a uniformly chosen table in a standard Chinese restaurant process with n - 1 customers.
Let $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\nu \in M^1([0,\infty [)$ be a fixed probability measure. For each dimension $p\in \mathbb{N}$, let $(X_n^{p})_{n\geq 1}$ be independent and identically distributed $\mathbb{R}^p$-valued random variables with radially symmetric distributions and radial distribution $\nu $. We investigate the distribution of the Euclidean length of $S_n^{p}:=X_1^{p}+\cdots + X_n^{p}$ for large parameters $n$ and $p$. Depending on the growth of the dimension $p=p_n$ we derive by the method of moments two complementary central limit theorems (CLTs)for the functional $\| S_n^{p}\| _2$ with normal limits, namely for $n/p_n \to \infty $ and $n/p_n \to 0$. Moreover, we present a CLT for the case $n/p_n \to c\in \, (0,\infty )$. Thereby we derive explicit formulas and asymptotic results for moments of radial distributed random variables on $\mathbb{R}^p$. All limit theorems are also considered for orthogonal invariant random walks on the space $\mathbb{M}_{p,q}(\mathbb{R})$ of $p\times q$ matrices instead of $\mathbb{R}^p$ for $p\to \infty $ and some fixed dimension $q$.
We analyze the optimal policy for the sequential selection of an alternating subsequence from a sequence of n independent observations from a continuous distribution F, and we prove a central limit theorem for the number of selections made by that policy. The proof exploits the backward recursion of dynamic programming and assembles a detailed understanding of the associated value functions and selection rules.
We show that the total number of collisions in the exchangeable coalescent process driven by the beta (1, b) measure converges in distribution to a 1-stable law, as the initial number of particles goes to ∞. The stable limit law is also shown for the total branch length of the coalescent tree. These results were known previously for the instance b = 1, which corresponds to the Bolthausen-Sznitman coalescent. The approach we take is based on estimating the quality of a renewal approximation to the coalescent in terms of a suitable Wasserstein distance. Application of the method to beta (a, b)-coalescents with 0 < a < 1 leads to a simplified derivation of the known (2 - a)-stable limit. We furthermore derive asymptotic expansions for the moments of the number of collisions and of the total branch length for the beta (1, b)-coalescent by exploiting the method of sequential approximations.
We consider a broad class of fair leader election algorithms, and study the duration of contestants (the number of rounds a randomly selected contestant stays in the competition) and the overall cost of the algorithm. We give sufficient conditions for the duration to have a geometric limit distribution (a perpetuity built from Bernoulli random variables), and for the limiting distribution of the total cost (after suitable normalization) to be a perpetuity. For the duration, the proof is established via convergence (to 0) of the first-order Wasserstein distance from the geometric limit. For the normalized overall cost, the method of proof is also convergence of the first-order Wasserstein distance, augmented with an argument based on a contraction mapping in the first-order Wasserstein metric space to show that the limit approaches a unique fixed-point solution of a perpetuity distributional equation. The use of these two steps is commonly referred to as the contraction method.
In this article we study a number of collisions concerning a simple occupancy problem with unequal probabilities. Using combinatorial arguments and negative associations of random variables, we have several limit theorems, namely, a weak law of large numbers and a Poisson law of small numbers including the Chen-Stein estimate.
For a family of linear preferential attachment graphs, we provide rates of convergence for the total variation distance between the degree of a randomly chosen vertex and an appropriate power law distribution as the number of vertices tends to ∞. Our proof uses a new formulation of Stein's method for the negative binomial distribution, which stems from a distributional transformation that has the negative binomial distributions as the only fixed points.
We study the array of point-to-point distances in random regular graphs equipped with exponential edge lengths. We consider the regime where the degree is kept fixed while the number of vertices tends to ∞. The marginal distribution of an individual entry is now well understood, thanks to the work of Bhamidi, van der Hofstad and Hooghiemstra (2010). The purpose of this note is to show that the whole array, suitably recentered, converges in the weak sense to an explicit infinite random array. Our proof consists in analyzing the invasion of the network by several mutually exclusive flows emanating from different sources and propagating simultaneously along the edges.
Consider a circle with perimeter N > 1 on which k < N segments of length 1 are sampled in an independent and identically distributed manner. In this paper we study the probability π (k,N) that these k segments do not overlap; the density φ(·) of the position of the disks on the circle is arbitrary (that is, it is not necessarily assumed uniform). Two scaling regimes are considered. In the first we set k≡ a√N, and it turns out that the probability of interest converges (N→ ∞) to an explicitly given positive constant that reflects the impact of the density φ(·). In the other regime k scales as aN, and the nonoverlap probability decays essentially exponentially; we give the associated decay rate as the solution to a variational problem. Several additional ramifications are presented.
In this paper we characterise the distributions of the number of predecessors and of the number of successors of a given set of vertices, A, in the random mapping model, TnD̂ (see Hansen and Jaworski (2008)), with exchangeable in-degree sequence (D̂1,D̂2,…,D̂n). We show that the exact formulae for these distributions and their expected values can be given in terms of the distributions of simple functions of the in-degree variables D̂1,D̂2,…,D̂n. As an application of these results, we consider two special examples of TnD̂ which correspond to random mappings with preferential and anti-preferential attachment, and determine the exact distributions for the number of predecessors and the number of successors in these cases. We also characterise, for these two special examples, the asymptotic behaviour of the expected numbers of predecessors and successors and interpret these results in terms of the threshold behaviour of epidemic processes on random mapping graphs. The families of discrete distributions obtained in this paper are also of independent interest.
Let Xi,i ∈ ℕ, be independent and identically distributed random variables with values in ℕ0. We transform (‘prune’) the sequence {X1,…,Xn},n∈ ℕ, of discrete random samples into a sequence {0,1,2,…,Yn}, n∈ ℕ, of contiguous random sets by replacing Xn+1 with Yn +1 if Xn+1 >Yn. We consider the asymptotic behaviour of Yn as n→∞. Applications include path growth in digital search trees and the number of tables in Pitman's Chinese restaurant process if the latter is conditioned on its limit value.
A scale-free tree with the parameter β is very close to a star if β is just a bit larger than −1, whereas it is close to a random recursive tree if β is very large. Through the Zagreb index, we consider the whole scene of the evolution of the scale-free trees model as β goes from −1 to + ∞. The critical values of β are shown to be the first several nonnegative integer numbers. We get the first two moments and the asymptotic behaviors of this index of a scale-free tree for all β. The generalized plane-oriented recursive trees model is also mentioned in passing, as well as the Gordon-Scantlebury and the Platt indices, which are closely related to the Zagreb index.