We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We develop a computational approximation to the intensity of a Gibbs spatial point process having interactions of any order. Limit theorems from stochastic geometry, and small-sample probabilities estimated once and for all by an extensive simulation study, are combined with scaling properties to form an approximation to the moment generating function of the sufficient statistic under a Poisson process. The approximate intensity is obtained as the solution of a self-consistency equation.
We investigate the estimation of the perimeter of a set by a graph cut of a random geometric graph. For Ω ⊆ D = (0, 1)d with d ≥ 2, we are given n random independent and identically distributed points on D whose membership in Ω is known. We consider the sample as a random geometric graph with connection distance ε > 0. We estimate the perimeter of Ω (relative to D) by the, appropriately rescaled, graph cut between the vertices in Ω and the vertices in D ∖ Ω. We obtain bias and variance estimates on the error, which are optimal in scaling with respect to n and ε. We consider two scaling regimes: the dense (when the average degree of the vertices goes to ∞) and the sparse one (when the degree goes to 0). In the dense regime, there is a crossover in the nature of the approximation at dimension d = 5: we show that in low dimensions d = 2, 3, 4 one can obtain confidence intervals for the approximation error, while in higher dimensions one can obtain only error estimates for testing the hypothesis that the perimeter is less than a given number.
In the first part of this paper we consider a general stationary subcritical cluster model in ℝd. The associated pair-connectedness function can be defined in terms of two-point Palm probabilities of the underlying point process. Using Palm calculus and Fourier theory we solve the Ornstein–Zernike equation (OZE) under quite general distributional assumptions. In the second part of the paper we discuss the analytic and combinatorial properties of the OZE solution in the special case of a Poisson-driven random connection model.
Extreme value theory for random vectors and stochastic processes with continuous trajectories is usually formulated for random objects where the univariate marginal distributions are identical. In the spirit of Sklar's theorem from copula theory, such marginal standardization is carried out by the pointwise probability integral transform. Certain situations, however, call for stochastic models whose trajectories are not continuous but merely upper semicontinuous (USC). Unfortunately, the pointwise application of the probability integral transform to a USC process does not, in general, preserve the upper semicontinuity of the trajectories. In this paper we give sufficient conditions to enable marginal standardization of USC processes and we state a partial extension of Sklar's theorem for USC processes. We specialize the results to max-stable processes whose marginal distributions and normalizing sequences are allowed to vary with the coordinate.
We consider a continuous, infinitely divisible random field in ℝd, d = 1, 2, 3, given as an integral of a kernel function with respect to a Lévy basis with convolution equivalent Lévy measure. For a large class of such random fields, we compute the asymptotic probability that the excursion set at level x contains some rotation of an object with fixed radius as x → ∞. Our main result is that the asymptotic probability is equivalent to the right tail of the underlying Lévy measure.
We consider a weighted stationary spherical Boolean model in ℝd to which a Matérn-type thinning is applied. Assuming that the radii of the balls in the Boolean model have regularly varying tails, we establish the asymptotic behavior of the tail of the contact distribution of the thinned germ–grain model under four different thinning procedures of the original model.
Mapping every simplex in the Delaunay mosaic of a discrete point set to the radius of the smallest empty circumsphere gives a generalized discrete Morse function. Choosing the points from a Poisson point process in ℝn, we study the expected number of simplices in the Delaunay mosaic as well as the expected number of critical simplices and nonsingular intervals in the corresponding generalized discrete gradient. Observing connections with other probabilistic models, we obtain precise expressions for the expected numbers in low dimensions. In particular, we obtain the expected numbers of simplices in the Poisson–Delaunay mosaic in dimensions n ≤ 4.
This work considers the problem of binary classification: given training data x1, . . ., xn from a certain population, together with associated labels y1,. . ., yn ∈ {0,1}, determine the best label for an element x not among the training data. More specifically, this work considers a variant of the regularized empirical risk functional which is defined intrinsically to the observed data and does not depend on the underlying population. Tools from modern analysis are used to obtain a concise proof of asymptotic consistency as regularization parameters are taken to zero at rates related to the size of the sample. These analytical tools give a new framework for understanding overfitting and underfitting, and rigorously connect the notion of overfitting with a loss of compactness.
We study the measure of a typical cell in a Voronoi tessellation defined by n independent random points X1, . . ., Xn drawn from an absolutely continuous probability measure μ with density f in ℝd. We prove that the asymptotic distribution of the measure – with respect to dμ = f(x)dx – of the cell containing X1 given X1 = x is independent of x and the density f. We determine all moments of the asymptotic distribution and show that the distribution becomes more concentrated as d becomes large. In particular, we show that the variance converges to 0 exponentially fast in d. We also obtain a bound independent of the density for the rate of convergence of the diameter of a typical Voronoi cell.
We analyse the coverage performance of cognitive radio networks powered by renewable energy. Particularly, with an energy harvesting module and energy storage module, the primary transmitters (PTs) and the secondary transmitters (STs) are assumed to be able to collect ambient renewables, and store them in batteries for future use. Upon harvesting sufficient energy, the corresponding PTs and STs (denoted by eligible PTs and STs) are then allowed to access the spectrum according to their respective medium access control (MAC) protocols. For the primary network, an Aloha-type MAC protocol is considered, under which the eligible PTs make independent decisions to access the spectrum with probability $\unicode[STIX]{x1D70C}_{p}$. By applying tools from stochastic geometry, we characterize the transmission probability of the STs. Then, with the obtained results of transmission probability, we evaluate the coverage (transmission nonoutage) performance of the overlay CR network powered by renewable energy. Simulations are also provided to validate our analysis.
In this paper we study the treewidth of the random geometric graph, obtained by dropping n points onto the square [0,√n]2 and connecting pairs of points by an edge if their distance is at most r=r(n). We prove a conjecture of Mitsche and Perarnau (2014) stating that, with probability going to 1 as n→∞, the treewidth of the random geometric graph is 𝜣(r√n) when lim inf r>rc, where rc is the critical radius for the appearance of the giant component. The proof makes use of a comparison to standard bond percolation and with a little bit of extra work we are also able to show that, with probability tending to 1 as k→∞, the treewidth of the graph we obtain by retaining each edge of the k×k grid with probability p is 𝜣(k) if p>½ and 𝜣(√log k) if p<½.
The (conditional or unconditional) distribution of the continuous scan statistic in a one-dimensional Poisson process may be approximated by that of a discrete analogue via time discretization (to be referred to as the discrete approximation). Using a change of measure argument, we derive the first-order term of the discrete approximation which involves some functionals of the Poisson process. Richardson's extrapolation is then applied to yield a corrected (second-order) approximation. Numerical results are presented to compare various approximations.
We study the asymptotic behaviour of the maximum interpoint distance of random points in a d-dimensional ellipsoid with a unique major axis. Instead of investigating only a fixed number of n points as n tends to ∞, we consider the much more general setting in which the random points are the supports of appropriately defined Poisson processes. Our main result covers the case of uniformly distributed points.
The main purpose of this paper is to define and characterize random fields of bounded variation, that is, random fields with sample paths in the space of functions of bounded variation, and to study their mean total variation. Simple formulas are obtained for the mean total directional variation of random fields, based on known formulas for the directional variation of deterministic functions. It is also shown that the mean variation of random fields with stationary increments is proportional to the Lebesgue measure, and an expression of the constant of proportionality, called the variation intensity, is established. This expression shows, in particular, that the variation intensity depends only on the family of two-dimensional distributions of the stationary increment random field. When restricting to random sets, the obtained results give generalizations of well-known formulas from stochastic geometry and mathematical morphology. The interest of these general results is illustrated by computing the variation intensities of several classical stationary random field and random set models, namely Gaussian random fields and excursion sets, Poisson shot noises, Boolean models, dead leaves models, and random tessellations.
This paper deals with long-range dependence of random measures on ℝd. By examples, it is demonstrated that one must be careful in order to define it consistently. Therefore, we define long-range dependence by a rather specific second-order condition and provide an equivalent formulation involving the asymptotic behaviour of the Bartlett spectrum near the origin. Then it is shown that the defining condition may be formulated less strictly when the additional isotropy assumption holds. Finally, we present an example of a long-range dependent random measure based on the 0-level excursion set of a Gaussian random field for which the corresponding spectral density and its asymptotics are explicitly derived.
Consider a family of Boolean models, indexed by integers n≥1. The nth model features a Poisson point process in ℝn of intensity e{nρn}, and balls of independent and identically distributed radii distributed like X̅n√n. Assume that ρn→ρ as n→∞, and that X̅n satisfies a large deviations principle. We show that there then exist the three deterministic thresholds τd, the degree threshold, τp, the percolation probability threshold, and τv, the volume fraction threshold, such that, asymptotically as n tends to ∞, we have the following features. (i) For ρ<τd, almost every point is isolated, namely its ball intersects no other ball; (ii) for τd<ρ<τp, the mean number of balls intersected by a typical ball converges to ∞ and nevertheless there is no percolation; (iii) for τp<ρ<τv, the volume fraction is 0 and nevertheless percolation occurs; (iv) for τd<ρ<τv, the mean number of balls intersected by a typical ball converges to ∞ and nevertheless the volume fraction is 0; (v) for ρ>τv, the whole space is covered. The analysis of this asymptotic regime is motivated by problems in information theory, but it could be of independent interest in stochastic geometry. The relations between these three thresholds and the Shannon‒Poltyrev threshold are discussed.
When a random field (Xt,t∈ℝ2) is thresholded on a given level u, the excursion set is given by its indicator 1[u, ∞)(Xt). The purpose of this work is to study functionals (as established in stochastic geometry) of these random excursion sets as, e.g. the capacity functional as well as the second moment measure of the boundary length. It extends results obtained for the one-dimensional case to the two-dimensional case, with tools borrowed from crossings theory, in particular, Rice methods, and from integral and stochastic geometry.
Motivated by an application in wireless telecommunication networks, we consider a two-type continuum-percolation problem involving a homogeneous Poisson point process of users and a stationary and ergodic point process of base stations. Starting from a randomly chosen point of the Poisson point process, we investigate the distribution of the minimum number of hops that are needed to reach some point of the base station process. In the supercritical regime of continuum percolation, we use the close relationship between Euclidean and chemical distance to identify the distributional limit of the rescaled minimum number of hops that are needed to connect a typical Poisson point to a point of the base station process as its intensity tends to 0. In particular, we obtain an explicit expression for the asymptotic probability that a typical Poisson point connects to a point of the base station process in a given number of hops.
A Poisson line tessellation is observed in the window Wρ := B(0, π-1/2ρ1/2) for ρ > 0. With each cell of the tessellation, we associate the inradius, which is the radius of the largest ball contained in the cell. Using the Poisson approximation, we compute the limit distributions of the largest and smallest order statistics for the inradii of all cells whose nuclei are contained in Wρ as ρ goes to ∞. We additionally prove that the limit shape of the cells minimising the inradius is a triangle.
In the full rectangular version of Gilbert's planar tessellation (see Gilbert (1967), Mackisack and Miles (1996), and Burridge et al. (2013)), lines extend either horizontally (with east- and west-growing rays) or vertically (north- and south-growing rays) from seed points which form a stationary Poisson point process, each ray stopping when it meets another ray that has blocked its path. In the half-Gilbert rectangular version, east- and south-growing rays, whilst having the potential to block each other, do not interact with west and north rays, and vice versa. East- and south-growing rays have a reciprocality of blocking, as do west and north. In this paper we significantly expand and simplify the half-Gilbert analytic results that we gave in Burridge et al. (2013). We also show how the idea of reciprocality of blocking between rays can be used in a much wider context, with rays not necessarily orthogonal and with seeds that produce more than two rays.