To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We analyze the mean cost of the partial match queries in random two-dimensional quadtrees. The method is based on fragmentation theory. The convergence is guaranteed by a coupling argument of Markov chains, whereas the value of the limit is computed as the fixed point of an integral equation.
We show how the extremal behavior of d-variate Archimedean copulas can be deduced from their stochastic representation as the survival dependence structure of an ℓ1-symmetric distribution (see McNeil and Nešlehová (2009)). We show that the extremal behavior of the radial part of the representation is determined by its Williamson d-transform. This leads in turn to simple proofs and extensions of recent results characterizing the domain of attraction of Archimedean copulas, their upper and lower tail-dependence indices, as well as their associated threshold copulas. We outline some of the practical implications of their results for the construction of Archimedean models with specific tail behavior and give counterexamples of Archimedean copulas whose coefficient of lower tail dependence does not exist.
We consider a branching process with Poissonian immigration where individuals have inheritable types. At rate θ, new individuals singly enter the total population and start a new population which evolves like a supercritical, homogeneous, binary Crump-Mode-Jagers process: individuals have independent and identically distributed lifetime durations (nonnecessarily exponential) during which they give birth independently at a constant rate b. First, using spine decomposition, we relax previously known assumptions required for almost-sure convergence of the total population size. Then, we consider three models of structured populations: either all immigrants have a different type, or types are drawn in a discrete spectrum or in a continuous spectrum. In each model, the vector (P1, P2,…) of relative abundances of surviving families converges almost surely. In the first model, the limit is the GEM distribution with parameter θ / b.
We consider a generalized form of the coupon collection problem in which a random number, S, of balls is drawn at each stage from an urn initially containing n white balls (coupons). Each white ball drawn is colored red and returned to the urn; red balls drawn are simply returned to the urn. The question considered is then: how many white balls (uncollected coupons) remain in the urn after the kn draws? Our analysis is asymptotic as n → ∞. We concentrate on the case when kn draws are made, where kn / n → ∞ (the superlinear case), although we sketch known results for other ranges of kn. A Gaussian limit is obtained via a martingale representation for the lower superlinear range, and a Poisson limit is derived for the upper boundary of this range via the Chen-Stein approximation.
A nanocomponent is a collection of atoms arranged to a specific design in order to achieve a desired function with an acceptable performance and reliability. The type of atoms, the manner in which they are arranged within the nanocomponent, and their interrelationship have a direct effect on the nanocomponent's reliability (survival) function. In this paper we propose models based on the notion of a copula that are used to describe the relationship between the atoms of a nanocomponent. Having defined these models, we go on to construct a ‘nanocomponent’ model in order to obtain the reliability function of a nanocomponent.
We consider a d-dimensional reflected fractional Brownian motion (RFBM) process on the positive orthant S = R+d, with drift r0 ∈ Rd and Hurst parameter H ∈ (½, 1). Under a natural stability condition on the drift vector r0 and reflection directions, we establish a return time result for the RFBM process Z; that is, for some δ, κ > 0, supx∈BEx[τB(δ)] < ∞, where B = {x ∈ S : |x| ≤ κ} and τB(δ) = inf{t ≥ δ : Z(t) ∈ B}. Similar results are known for reflected processes driven by standard Brownian motions, and our result can be viewed as their FBM counterpart. Our motivation for this study is that RFBM appears as a limiting workload process for fluid queueing network models fed by a large number of heavy-tailed ON/OFF sources in heavy traffic.
Start with a compact set K ⊂ Rd. This has a random number of daughter sets, each of which is a (rotated and scaled) copy of K and all of which are inside K. The random mechanism for producing daughter sets is used independently on each of the daughter sets to produce the second generation of sets, and so on, repeatedly. The random fractal set F is the limit, as n goes to ∞, of the union of the nth generation sets. In addition, K has a (suitable, random) mass which is divided randomly between the daughter sets, and this random division of mass is also repeated independently, indefinitely. This division of mass will correspond to a random self-similar measure on F. The multifractal spectrum of this measure is studied here. Our main contributions are dealing with the geometry of realisations in Rd and drawing systematically on known results for general branching processes. In this way we generalise considerably the results of Arbeiter and Patzschke (1996) and Patzschke (1997).
We consider the asymptotic variance of the departure counting process D(t) of the GI/G/1 queue; D(t) denotes the number of departures up to time t. We focus on the case where the system load ϱ equals 1, and prove that the asymptotic variance rate satisfies limt→∞varD(t) / t = λ(1–2/π)(ca2 + cs2), where λ is the arrival rate, and ca2 and cs2 are squared coefficients of variation of the interarrival and service times, respectively. As a consequence, the departures variability has a remarkable singularity in the case in which ϱ equals 1, in line with the BRAVO (balancing reduces asymptotic variance of outputs) effect which was previously encountered in finite-capacity birth-death queues. Under certain technical conditions, our result generalizes to multiserver queues, as well as to queues with more general arrival and service patterns. For the M/M/1 queue, we present an explicit expression of the variance of D(t) for any t.
In this paper we present simple extensions of earlier works on the optimal time to exchange one basket of log Brownian assets for another. A superset and subset of the optimal stopping region in the case where both baskets consist of multiple assets are obtained. It is also shown that a conjecture of Hu and Øksendal (1998) is false except in the trivial case where all the assets in a basket are the same processes.
In this paper we study the fighter problem with discrete ammunition. An aircraft (fighter) equipped with n anti-aircraft missiles is intercepted by enemy airplanes, the appearance of which follows a homogeneous Poisson process with known intensity. If j of the n missiles are spent at an encounter, they destroy an enemy plane with probability a(j), where a(0) = 0 and {a(j)} is a known, strictly increasing concave sequence, e.g. a(j) = 1 - qj, 0 < q < 1. If the enemy is not destroyed, the enemy shoots the fighter down with known probability 1 - u, where 0 ≤ u ≤ 1. The goal of the fighter is to shoot down as many enemy airplanes as possible during a given time period [0, T]. Let K(n, t) be the smallest optimal number of missiles to be used at a present encounter, when the fighter has flying time t remaining and n missiles remaining. Three seemingly obvious properties of K(n, t) have been conjectured: (A) the closer to the destination, the more of the n missiles one should use; (B) the more missiles one has; the more one should use; and (C) the more missiles one has, the more one should save for possible future encounters. We show that (C) holds for all 0 ≤ u ≤ 1, that (A) and (B) hold for the ‘invincible fighter’ (u = 1), and that (A) holds but (B) fails for the ‘frail fighter’ (u = 0); the latter is shown through a surprising counterexample, which is also valid for small u > 0 values.
Let (Bt)0≤t≤T be either a Bernoulli random walk or a Brownian motion with drift, and let Mt := max{Bs: 0 ≤ s ≤ t}, 0 ≤ t ≤ T. In this paper we solve the general optimal prediction problem sup0≤τ≤TE[f(MT − Bτ], where the supremum is over all stopping times τ adapted to the natural filtration of (Bt) and f is a nonincreasing convex function. The optimal stopping time τ* is shown to be of ‘bang-bang’ type: τ* ≡ 0 if the drift of the underlying process (Bt) is negative and τ* ≡ T if the drift is positive. This result generalizes recent findings of Toit and Peskir (2009) and Yam, Yung and Zhou (2009), and provides additional mathematical justification for the dictum in finance that one should sell bad stocks immediately, but keep good stocks as long as possible.
We propose a model for the presence/absence of a population in a collection of habitat patches. This model assumes that colonisation and extinction of the patches occur as distinct phases. Importantly, the local extinction probabilities are allowed to vary between patches. This permits an investigation of the effect of habitat degradation on the persistence of the population. The limiting behaviour of the model is examined as the number of habitat patches increases to ∞. This is done in the case where the number of patches and the initial number of occupied patches increase at the same rate, and for the case where the initial number of occupied patches remains fixed.
The point process of vertices of an iteration infinitely divisible or, more specifically, of an iteration stable random tessellation in the Euclidean plane is considered. We explicitly determine its covariance measure and its pair-correlation function, as well as the cross-covariance measure and the cross-correlation function of the vertex point process and the random length measure in the general nonstationary regime. We also give special formulae in the stationary and isotropic setting. Exact formulae are given for vertex count variances in compact and convex sampling windows, and asymptotic relations are derived. Our results are then compared with those for a Poisson line tessellation having the same length density parameter. Moreover, a functional central limit theorem for the joint process of suitably rescaled total edge counts and edge lengths is established with the process (ξ, tξ), t > 0, arising in the limit, where ξ is a centered Gaussian variable with explicitly known variance.
Melamed's theorem states that, for a Jackson queueing network, the equilibrium flow along a link follows a Poisson distribution if and only if no customers can travel along the link more than once. Barbour and Brown (1996) considered the Poisson approximate version of Melamed's theorem by allowing the customers a small probability p of travelling along the link more than once. In this note, we prove that the customer flow process is a Poisson cluster process and then establish a general approximate version of Melamed's theorem that accommodates all possible cases of 0 ≤ p < 1.
We study the multi-selection version of the so-called odds theorem by Bruss (2000). We observe a finite number of independent 0/1 (failure/success) random variables sequentially and want to select the last success. We derive the optimal selection rule when m (≥ 1) selection chances are given and find that the optimal rule has the form of a combination of multiple odds-sums. We provide a formula for computing the maximum probability of selecting the last success when we have m selection chances and also provide closed-form formulae for m = 2 and 3. For m = 2, we further give the bounds for the maximum probability of selecting the last success and derive its limit as the number of observations goes to ∞. An interesting implication of our result is that the limit of the maximum probability of selecting the last success for m = 2 is consistent with the corresponding limit for the classical secretary problem with two selection chances.
The aim of this paper is to analyze a class of random processes which models the motion of a particle on the real line with random velocity and subject to the action of friction. The speed randomly changes when a Poissonian event occurs. We study the characteristic and moment generating functions of the position reached by the particle at time t > 0. We are able to derive the explicit probability distributions in a few cases. The moments are also widely analyzed. For the random motions having an explicit density law, further interesting probabilistic interpretations emerge if we consider randomly varying time. Essentially, we consider two different types of random time, namely Bessel and gamma times, which contain, as particular cases, some important probability distributions (e.g. Gaussian, exponential). For the random processes built by means of these compositions, we derive the probability distributions for a fixed number of Poisson events. Some remarks on possible extensions to random motions in higher spaces are proposed. We focus our attention on the persistent planar random motion.
We consider spatial stochastic models, which can be applied to, e.g. telecommunication networks with two hierarchy levels. In particular, we consider Cox processes XL and XH concentrated on the edge set T(1) of a random tessellation T, where the points XL,n and XH,n of XL and XH can describe the locations of low-level and high-level network components, respectively, and T(1) the underlying infrastructure of the network, such as road systems, railways, etc. Furthermore, each point XL,n of XL is marked with the shortest path along the edges of T to the nearest (in the Euclidean sense) point of XH. We investigate the typical shortest path length C* of the resulting marked point process, which is an important characteristic in, e.g. performance analysis and planning of telecommunication networks. In particular, we show that the distribution of C* converges to simple parametric limit distributions if a scaling factor κ converges to 0 or ∞. This can be used to approximate the density of C* by analytical formulae for a wide range of κ.
In this paper we study the Wiener-Hopf factorization for a class of Lévy processes with double-sided jumps, characterized by the fact that the density of the Lévy measure is given by an infinite series of exponential functions with positive coefficients. We express the Wiener-Hopf factors as infinite products over roots of a certain transcendental equation, and provide a series representation for the distribution of the supremum/infimum process evaluated at an independent exponential time. We also introduce five eight-parameter families of Lévy processes, defined by the fact that the density of the Lévy measure is a (fractional) derivative of the theta function, and we show that these processes can have a wide range of behavior of small jumps. These families of processes are of particular interest for applications, since the characteristic exponent has a simple expression, which allows efficient numerical computation of the Wiener-Hopf factors and distributions of various functionals of the process.
In this paper we consider a generalized coupon collection problem in which a customer repeatedly buys a random number of distinct coupons in order to gather a large number n of available coupons. We address the following question: How many different coupons are collected after k = kn draws, as n → ∞? We identify three phases of kn: the sublinear, the linear, and the superlinear. In the growing sublinear phase we see o(n) different coupons, and, with true randomness in the number of purchases, under the appropriate centering and scaling, a Gaussian distribution is obtained across the entire phase. However, if the number of purchases is fixed, a degeneracy arises and normality holds only at the higher end of this phase. If the number of purchases have a fixed range, the small number of different coupons collected in the sublinear phase is upgraded to a number in need of centering and scaling to become normally distributed in the linear phase with a different normal distribution of the type that appears in the usual central limit theorems. The Gaussian results are obtained via martingale theory. We say a few words in passing about the high probability of collecting nearly all the coupons in the superlinear phase. It is our aim to present the results in a way that explores the critical transition at the ‘seam line’ between different Gaussian phases, and between these phases and other nonnormal phases.
This short note offers a new proof of the following fact: in a discrete-time arbitrage-free market model, a contingent claim is attainable if and only if its expected value is the same under all equivalent martingale measures. The proof is based on Rogers' (1994) proof of the Dalang-Morton-Willinger (1990) theorem.