To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study a class of optimal allocation problems, including the well-known bomber problem, with the following common probabilistic structure. An aircraft equipped with an amount x of ammunition is intercepted by enemy airplanes arriving according to a homogeneous Poisson process over a fixed time duration t. Upon encountering an enemy, the aircraft has the choice of spending any amount 0 ≤ y ≤ x of its ammunition, resulting in the aircraft's survival with probability equal to some known increasing function of y. Two different goals have been considered in the literature concerning the optimal amount K(x, t) of ammunition spent: (i) maximizing the probability of surviving for time t, which is the so-called bomber problem; and (ii) maximizing the number of enemy airplanes shot down during time t, which we call the fighter problem. Several authors have attempted to settle the following conjectures about the monotonicity of K(x, t): (A) K(x, t) is decreasing in t; (B) K(x, t) is increasing in x; and (C) the amount x - K(x, t) held back is increasing in x. Conjectures (A) and (C) have been shown for the bomber problem with discrete ammunition, while (B) is still an open question. In this paper we consider both time and ammunition to be continuous, and, for the bomber problem, we prove (A) and (C), while, for the fighter problem, we prove (A) and (C) for one special case and (B) and (C) for another. These proofs involve showing that the optimal survival probability and optimal number shot down are totally positive of order 2 (TP2) in the bomber and fighter problems, respectively. The TP2 property is shown by constructing convergent sequences of approximating functions through an iterative operation which preserves TP2 and other properties.
We consider the optimal stopping problem of maximizing the probability of stopping on any of the last m successes of a sequence of independent Bernoulli trials of length n, where m and n are predetermined integers such that 1 ≤ m < n. The optimal stopping rule of this problem has a nice interpretation, that is, it stops on the first success for which the sum of the m-fold multiplicative odds of success for the future trials is less than or equal to 1. This result can be viewed as a generalization of Bruss' (2000) odds theorem. Application will be made to the secretary problem. For more generality, we extend the problem in several directions in the same manner that Ferguson (2008) used to extend the odds theorem. We apply this extended result to the full-information analogue of the secretary problem, and derive the optimal stopping rule and the probability of win explicitly. The asymptotic results, as n tends to ∞, are also obtained via the planar Poisson process approach.
In this paper we focus on the asymptotic properties of the sequence of convex hulls which arise as a result of a peeling procedure applied to the convex hull generated by a Poisson point process. Processes of the considered type are tightly connected with empirical point processes and stable random vectors. Results are given about the limit shape of the convex hulls in the case of a discrete spectral measure. We give some numerical experiments to illustrate the peeling procedure for a larger class of Poisson point processes.
We take a new look at transient, or time-dependent Little laws for queueing systems. Through the use of Palm measures, we show that previous laws (see Bertsimas and Mourtzinou (1997)) can be generalized. Furthermore, within this framework, a new law can be derived as well, which gives higher-moment expressions for very general types of queueing system; in particular, the laws hold for systems that allow customers to overtake one another. What is especially novel about our approach is the use of Palm measures that are induced by nonstationary point processes, as these measures are not commonly found in the queueing literature. This new higher-moment law is then used to provide expressions for all moments of the number of customers in the system in an M/G/1 preemptive last-come-first-served queue at a time t > 0, for any initial condition and any of the more famous preemptive disciplines (i.e. preemptive-resume, and preemptive-repeat with and without resampling) that are analogous to the special cases found in Abate and Whitt (1987c), (1988). These expressions are then used to derive a nice structural form for all of the time-dependent moments of a regulated Brownian motion (see Abate and Whitt (1987a), (1987b)).
Contemporaneous aggregation of N independent copies of a random-coefficient AR(1) process with random coefficient a ∈ (−1, 1) and independent and identically distributed innovations belonging to the domain of attraction of an α-stable law (0 < α < 2) is discussed. We show that, under the normalization N1/α, the limit aggregate exists, in the sense of weak convergence of finite-dimensional distributions, and is a mixed stable moving average as studied in Surgailis, Rosiński, Mandrekar and Cambanis (1993). We focus on the case where the slope coefficient a has probability density vanishing regularly at a = 1 with exponent b ∈ (0, α − 1) for α ∈ (1, 2). We show that in this case, the limit aggregate {X̅t} exhibits long memory. In particular, for {X̅t}, we investigate the decay of the codifference, the limit of partial sums, and the long-range dependence (sample Allen variance) property of Heyde and Yang (1997).
We examine the long-time behavior of forward rates in the framework of Heath-Jarrow-Morton-Musiela models with infinite-dimensional Lévy noise. We give an explicit condition under which the rates have a mean reversion property. In a special case we show that this condition is fulfilled for any Lévy process with variance smaller than a given constant, depending only on the state space and the volatility.
We consider a preferential duplication model for growing random graphs, extending previous models of duplication graphs by selecting the vertex to be duplicated with probability proportional to its degree. We show that a special case of this model can be analysed using the same stochastic approximation as for vertex-reinforced random walks, and show that ‘trapping’ behaviour can occur, such that the descendants of a particular group of initial vertices come to dominate the graph.
For a typical cell of a homogeneous Poisson-Voronoi tessellation in ℝd, it is shown that the variance of the volume of the intersection of the typical cell with any measurable subset of ℝd is bounded by the variance of the volume of the typical cell. It is also shown that the variance of the volume of the intersection of the typical cell with a translation of itself is bounded by four times the variance of the volume of the typical cell. These bounds are applied to show large-dimensional volume degeneracy as d tends to ∞. An extension to the kth nearest-point Poisson-Voronoi tessellation for k ≥ 2 is also considered.
We consider a random walks system on ℤ in which each active particle performs a nearest-neighbor random walk and activates all inactive particles it encounters. The movement of an active particle stops when it reaches a certain number of jumps without activating any particle. We prove that if the process relies on efficient particles (i.e. those particles with a small probability of jumping to the left) being placed strategically on ℤ, then it might survive, having active particles at any time with positive probability. On the other hand, we may construct a process that dies out eventually almost surely, even if it relies on efficient particles. That is, we discuss what happens if particles are initially placed very far away from each other or if their probability of jumping to the right tends to 1 but not fast enough.
Studying the geometry generated by Gaussian and Gaussian-related random fields via their excursion sets is now a well-developed and well-understood subject. The purely non-Gaussian scenario has, however, not been studied at all. In this paper we look at three classes of stable random fields, and obtain asymptotic formulae for the mean values of various geometric characteristics of their excursion sets over high levels. While the formulae are asymptotic, they contain enough information to show that not only do stable random fields exhibit geometric behaviour very different from that of Gaussian fields, but they also differ significantly among themselves.
We consider a Markov additive process (MAP) with phase-type jumps, starting at 0. Given a positive level u, we determine the joint distribution of the undershoot and overshoot of the first jump over the level u, the maximal level before this jump, the time of attaining this maximum, and the time between the maximum and the jump. The analysis is based on first passage times and time reversion of MAPs. A marginal of the derived distribution is the Gerber-Shiu function, which is of interest to insurance risk. Several examples serve to compare the present result with the literature.
The stochastic Lagrange wave model is a realistic alternative to the Gaussian linear wave model, which has been successfully used in ocean engineering for more than half a century. In this paper we present the slope distributions and other characteristic distributions at level crossings for asymmetric Lagrange time waves, i.e. what can be observed at a fixed measuring station, thereby extending results previously given for space waves. The distributions are given as expectations in a multivariate normal distribution, and they have to be evaluated by simulation or numerical integration. Interesting characteristic variables are the slope in time, the slope in space, and the vertical particle velocity when the waves are observed close to instances when the water level crosses a predetermined level. The theory has been made possible by recent generalizations of Rice's formula for the expected number of marked crossings in random fields.
We analyze the notion of ‘reliability prediction’ by studying in detail a key property that is tacitly assumed to make reliability prediction possible. The analysis leads in turn to a special type of point process for which the connection of future to past can be explicitly displayed. In this type of process, the semi-renewal process, all finite-dimensional distributions are completely determined by the distribution of the time to the first event in the process. The theory provides a heretofore unappreciated unification of the two most commonly used reliability prediction models for maintained systems, namely, the renewal and revival processes. We show that familiar results from renewal theory extend and generalize to semi-renewal processes.
We study the optimal liquidation strategy for a call spread in the case when an investor, who does not hedge, believes in a volatility that differs from the implied volatility. The liquidation problem is formulated as an optimal stopping problem, which we solve explicitly. We also provide a sensitivity analysis with respect to the model parameters.
In this paper we consider the probabilities of finite- and infinite-time absolute ruins in the renewal risk model with constant premium rate and constant force of interest. In the particular case of the compound Poisson model, explicit asymptotic expressions for the finite- and infinite-time absolute ruin probabilities are given. For the general renewal risk model, we present an asymptotic expression for the infinite-time absolute ruin probability. Conditional distributions of Poisson processes and probabilistic techniques regarding randomly weighted sums are employed in the course of this study.
In this paper we describe methods for randomly thinning certain classes of spatial point processes. In the case of a Markov point process, the proposed method involves a dependent thinning of a spatial birth-and-death process, where clans of ancestors associated with the original points are identified, and where we simulate backwards and forwards in order to obtain the thinned process. In the case of a Cox process, a simple independent thinning technique is proposed. In both cases, the thinning results in a Poisson process if and only if the true Papangelou conditional intensity is used, and, thus, can be used as a graphical exploratory tool for inspecting the goodness-of-fit of a spatial point process model. Several examples, including clustered and inhibitive point processes, are considered.
We study a stochastic differential game between two insurance companies who employ reinsurance to reduce the risk of exposure. Under the assumption that the companies have large insurance portfolios compared to any individual claim size, their surplus processes can be approximated by stochastic differential equations. We formulate competition between the two companies as a game with a single payoff function which depends on the surplus processes. One company chooses a dynamic reinsurance strategy in order to maximize this expected payoff, while the other company simultaneously chooses a dynamic reinsurance strategy so as to minimize the same quantity. We describe the Nash equilibrium of this stochastic differential game and solve it explicitly for the case of maximizing/minimizing the exit probability.
We consider the problem of efficient estimation via simulation of first passage time probabilities for a multidimensional random walk with heavy-tailed increments. In addition to being a natural generalization to the problem of computing ruin probabilities in insurance - in which the focus is the maximum of a one-dimensional random walk with negative drift - this problem captures important features of large deviations for multidimensional heavy-tailed processes (such as the role played by the mean of the process in connection to the location of the target set). We develop a state-dependent importance sampling estimator for this class of multidimensional problems. Then, using techniques based on Lyapunov inequalities, we argue that our estimator is strongly efficient in the sense that the relative mean squared error of our estimator can be made arbitrarily small by increasing the number of replications, uniformly as the probability of interest approaches 0.
We consider a Poisson cluster model, motivated by insurance applications. At each claim arrival time, modeled by the point of a homogeneous Poisson process, we start a cluster process which represents the number or amount of payments triggered by the arrival of a claim in a portfolio. The cluster process is a Lévy or truncated compound Poisson process. Given the observations of the process over a finite interval, we consider the expected value of the number and amount of payments in a future time interval. We also give bounds for the error encountered in this prediction procedure.
Consider a family of random ordered graph trees (Tn)n≥1, where Tn has n vertices. It has previously been established that if the associated search-depth processes converge to the normalised Brownian excursion when rescaled appropriately as n → ∞, then the simple random walks on the graph trees have the Brownian motion on the Brownian continuum random tree as their scaling limit. Here, this result is extended to demonstrate the existence of a diffusion scaling limit whenever the volume measure on the limiting real tree is nonatomic, supported on the leaves of the limiting tree, and satisfies a polynomial lower bound for the volume of balls. Furthermore, as an application of this generalisation, it is established that the simple random walks on a family of Galton-Watson trees with a critical infinite variance offspring distribution, conditioned on the total number of offspring, can be rescaled to converge to the Brownian motion on a related α-stable tree.