To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study a family of Markov processes on P(k), the space of partitions of the natural numbers with at most k blocks. The process can be constructed from a Poisson point process on R+ x ∏i=1kP(k) with intensity dt ⊗ ϱν(k), where ϱν is the distribution of the paintbox based on the probability measure ν on Pm, the set of ranked-mass partitions of 1, and ϱν(k) is the product measure on ∏i=1kP(k). We show that these processes possess a unique stationary measure, and we discuss a particular set of reversible processes for which transition probabilities can be written down explicitly.
In this paper we consider an extension of the two-dimensional risk model introduced in Avram, Palmowski and Pistorius (2008a). To this end, we assume that there are two insurers. The first insurer is subject to claims arising from two independent compound Poisson processes. The second insurer, which can be viewed as a different line of business of the same insurer or as a reinsurer, covers a proportion of the claims arising from one of these two compound Poisson processes. We derive the Laplace transform of the time until ruin of at least one insurer when the claim sizes follow a general distribution. The surplus level of the first insurer when the second insurer is ruined first is discussed at the end in connection with some open problems.
In this paper we consider the scaled limit of a continuous-time random walk (CTRW) based on a Markov chain {Xn, n ≥ 0} and two observables, τ(∙) and V(∙), corresponding to the renewal times and jump sizes. Assuming that these observables belong to the domains of attraction of some stable laws, we give sufficient conditions on the chain that guarantee the existence of the scaled limits for CTRWs. An application of the results to a process that arises in quantum transport theory is provided. The results obtained in this paper generalize earlier results contained in Becker-Kern, Meerschaert and Scheffler (2004) and Meerschaert and Scheffler (2008), and the recent results of Henry and Straka (2011) and Jurlewicz, Kern, Meerschaert and Scheffler (2010), where {Xn, n ≥ 0} is a sequence of independent and identically distributed random variables.
We propose a method for estimating first passage time densities of one-dimensional diffusions via Monte Carlo simulation. Our approach involves a representation of the first passage time density as the expectation of a functional of the three-dimensional Brownian bridge. As the latter process can be simulated exactly, our method leads to almost unbiased estimators. Furthermore, since the density is estimated directly, a convergence of order 1 / √N, where N is the sample size, is achieved, which is in sharp contrast to the slower nonparametric rates achieved by kernel smoothing of cumulative distribution functions.
We introduce a new point process, the dynamic contagion process, by generalising the Hawkes process and the Cox process with shot noise intensity. Our process includes both self-excited and externally excited jumps, which could be used to model the dynamic contagion impact from endogenous and exogenous factors of the underlying system. We have systematically analysed the theoretical distributional properties of this new process, based on the piecewise-deterministic Markov process theory developed in Davis (1984), and the extension of the martingale methodology used in Dassios and Jang (2003). The analytic expressions of the Laplace transform of the intensity process and the probability generating function of the point process have been derived. An explicit example of specified jumps with exponential distributions is also given. The object of this study is to produce a general mathematical framework for modelling the dependence structure of arriving events with dynamic contagion, which has the potential to be applicable to a variety of problems in economics, finance, and insurance. We provide an application of this process to credit risk, and a simulation algorithm for further industrial implementation and statistical analysis.
In this paper we study sums of micropulses that generate different kinds of processes. Fractional Brownian motion and bifractional Brownian motion are obtained as limit processes. Moreover, we not only prove the convergence of finite-dimensional laws but also, in some cases, convergence in distribution in the space of right-continuous functions with left limits. Finally, we obtain generalizations with multidimensional indices.
We study asymptotically optimal simulation algorithms for approximating the tail probability of P(eX1+⋯+ eXd>u) as u→∞. The first algorithm proposed is based on conditional Monte Carlo and assumes that (X1,…,Xd) has an elliptical distribution with very mild assumptions on the radial component. This algorithm is applicable to a large class of models in finance, as we demonstrate with examples. In addition, we propose an importance sampling algorithm for an arbitrary dependence structure that is shown to be asymptotically optimal under mild assumptions on the marginal distributions and, basically, that we can simulate efficiently (X1,…,Xd|Xj >b) for large b. Extensions that allow us to handle portfolios of financial options are also discussed.
We consider a queue where the server is the Euclidean space, and the customers are random closed sets (RACSs) of the Euclidean space. These RACSs arrive according to a Poisson rain and each of them has a random service time (in the case of hail falling on the Euclidean plane, this is the height of the hailstone, whereas the RACS is its footprint). The Euclidean space serves customers at speed 1. The service discipline is a hard exclusion rule: no two intersecting RACSs can be served simultaneously and service is in the first-in–first-out order, i.e. only the hailstones in contact with the ground melt at speed 1, whereas the others are queued. A tagged RACS waits until all RACSs that arrived before it and intersecting it have fully melted before starting its own melting. We give the evolution equations for this queue. We prove that it is stable for a sufficiently small arrival intensity, provided that the typical diameter of the RACS and the typical service time have finite exponential moments. We also discuss the percolation properties of the stationary regime of the RACS in the queue.
The limit behaviour in probability of realised quadratic variation is discussed under a relatively simple ambit process setting. The relation of this to the underlying volatility/intermittency field is in focus, especially as concerns the question of no volatility/intermittency memory.
We consider an insurance model, where the underlying point process is a Cox process. Using a martingale approach applied to diffusion processes, finite-time Lundberg inequalities are obtained. By change-of-measure techniques, Cramér–Lundberg approximations are derived.
For a random walk with both downward and upward jumps (increments), the joint distribution of the exit time across a given level and the undershoot or overshoot at crossing is determined through its generating function, when assuming that the distribution of the jump in the direction making the exit possible has a Laplace transform which is a rational function. The expected exit time is also determined and the paper concludes with exact distribution results concerning exits from bounded intervals. The proofs use simple martingale techniques together with some classical expansions of polynomials and Rouché's theorem from complex function theory.
A Hawkes process is also known under the name of a self-exciting point process and has numerous applications throughout science and engineering. We derive the statistical estimation (maximum likelihood estimation) and goodness-of-fit (mainly graphical) for multivariate Hawkes processes with possibly dependent marks. As an application, we analyze two data sets from finance.
This paper provides a simple proof for the fact that the hitting time to an infrequently visited subset for a one-dependent regenerative process converges weakly to an exponential distribution. Special cases are positive recurrent Harris chains and Harris processes. The paper further extends this class of limit theorems to ‘rewards’ that are cumulated to the hitting time of such a rare set.
Let ξ be a random measure on a locally compact second countable topological group, and let X be a random element in a measurable space on which the group acts. In the compact case we give a natural definition of the concept that the origin is a typical location for X in the mass of ξ, and prove that when this holds, the same is true on sets placed uniformly at random around the origin. This new result motivates an extension of the concept of typicality to the locally compact case where it coincides with the concept of mass-stationarity. We describe recent developments in Palm theory where these ideas play a central role.
In this paper we extend our previous work. We consider the local-time process L of a strong Markov process X, add negative drift to L, and reflect it à la Skorokhod to obtain a process Q. The reflection of X, together with Q, is, in some sense, a macroscopic model for a service system with two priorities. We derive an expression for the joint law of the duration of an excursion, the maximum value of the process on it, and the time between successive excursions. We work with a properly constructed stationary version of the process. Examples are also given in the paper.
We consider a stochastic differential equation (SDE) with piecewise linear drift driven by a spectrally one-sided Lévy process. We show that this SDE has some connections with queueing and storage models, and we use this observation to obtain the invariant distribution.
We consider the problem of estimating the probability that the maximum of a Gaussian process with negative mean and indexed by positive integers reaches a high level, say b. In great generality such a probability converges to 0 exponentially fast in a power of b. Under mild assumptions on the marginal distributions of the process and no assumption on the correlation structure, we develop an importance sampling procedure, called the target bridge sampler (TBS), which takes a polynomial (in b) number of function evaluations to achieve a small relative error. The procedure also yields samples of the underlying process conditioned on hitting b in finite time. In addition, we apply our method to the problem of estimating the tail of the maximum of a superposition of a large number, n, of independent Gaussian sources. In this situation TBS achieves a prescribed relative error with a bounded number of function evaluations as n ↗ ∞. A remarkable feature of TBS is that it is not based on exponential changes of measure. Our numerical experiments validate the performance indicated by our theoretical findings.
We investigate the conditional full support (CFS) property, introduced in Guasoni et al. (2008a), for Gaussian processes with stationary increments. We give integrability conditions on the spectral measure of such a process which ensure that the process has CFS or not. In particular, the general results imply that, for a process with spectral density f such that f(λ) ∼ c1λpe−c2λq for λ → ∞ (with necessarily p < 1 if q = 0), the CFS property holds if and only if q < 1.
We consider the following stochastic model for a mobile service scenario. Consider a stationary Poisson process in Rd, with its points radially ordered with respect to the origin (the anchor); if d = 2, the points may correspond to locations of, e.g. restaurants. A user, with a location different from the origin, asks for the location of the first Poisson point and keeps asking for the location of the next Poisson point until the first time that he/she can be completely certain that he/she knows which Poisson point is his/her nearest neighbour. This waiting time is the communication cost, while the inferred privacy region is a random set obtained by an adversary who only knows the anchor and the points received from the server, where the adversary ‘does the best’ to infer the possible locations of the user. Probabilistic results related to the communication cost and the inferred privacy region are established for any dimension d ≥ 1. Furthermore, special results when d = 1 and particularly when d = 2 are derived.
The modeling of random bi-phasic, or porous, media has been, and still is, under active investigation by mathematicians, physicists, and physicians. In this paper we consider a thresholded random process X as a source of the two phases. The intervals when X is in a given phase, named chords, are the subject of interest. We focus on the study of the tails of the chord length distribution functions. In the literature concerned with real data, different types of tail behavior have been reported, among them exponential-like or power-like decay. We look for the link between the dependence structure of the underlying thresholded process X and the rate of decay of the chord length distribution. When the process X is a stationary Gaussian process, we relate the latter to the rate at which the covariance function of X decays at large lags. We show that exponential, or nearly exponential, decay of the tail of the distribution of the chord lengths is very common, perhaps surprisingly so.