To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let Xn be a sequence of integrable real random variables, adapted to a filtration (Gn). Define Cn = √{(1 / n)∑k=1nXk − E(Xn+1 | Gn)} and Dn = √n{E(Xn+1 | Gn) − Z}, where Z is the almost-sure limit of E(Xn+1 | Gn) (assumed to exist). Conditions for (Cn, Dn) → N(0, U) x N(0, V) stably are given, where U and V are certain random variables. In particular, under such conditions, we obtain √n{(1 / n)∑k=1nX_k - Z} = Cn + Dn → N(0, U + V) stably. This central limit theorem has natural applications to Bayesian statistics and urn problems. The latter are investigated, by paying special attention to multicolor randomly reinforced urns.
We provide necessary and sufficient conditions for the asymptotic normality of Nn, the number of records among the first n observations from a sequence of independent and identically distributed random variables, with general distribution F. In the case of normality we identify the centering and scaling sequences. Also, we characterize distributions for which the limit is not normal in terms of their discrete and continuous components.
In this paper we introduce conditionally independent increment point processes, that is, processes that are conditionally independent inside and outside a bounded set A given N(A), the number of points in A. We show that these point processes can be characterized by means of the avoidance function of a multinomial ‘support process’, the solution of a suitably defined linear system of equations, and, finally, the infinitesimal matrix of a continuous-time Markov chain.
This paper is motivated by relations between association and independence of random variables. It is well known that, for real random variables, independence implies association in the sense of Esary, Proschan and Walkup (1967), while, for random vectors, this simple relationship breaks. We modify the notion of association in such a way that any vector-valued process with independent increments also has associated increments in the new sense - association between blocks. The new notion is quite natural and admits nice characterization for some classes of processes. In particular, using the covariance interpolation formula due to Houdré, Pérez-Abreu and Surgailis (1998), we show that within the class of multidimensional Gaussian processes, block association of increments is equivalent to supermodularity (in time) of the covariance functions. We also define corresponding versions of weak association, positive association, and negative association. It turns out that the central limit theorem for weakly associated random vectors due to Burton, Dabrowski and Dehling (1986) remains valid, if the weak association is relaxed to the weak association between blocks.
Max-stable random fields play a central role in modeling extreme value phenomena. We obtain an explicit formula for the conditional probability in general max-linear models, which include a large class of max-stable random fields. As a consequence, we develop an algorithm for efficient and exact sampling from the conditional distributions. Our method provides a computational solution to the prediction problem for spectrally discrete max-stable random fields. This work offers new tools and a new perspective to many statistical inference problems for spatial extremes, arising, for example, in meteorology, geology, and environmental applications.
Coalescents with multiple collisions (also called Λ-coalescents or simple exchangeable coalescents) are used as models of genealogies. We study a new class of Markovian coalescent processes connected to a population model with immigration. Consider an infinite population with immigration labelled at each generation by N := {1, 2, …}. Some ancestral lineages cannot be followed backwards after some time because their ancestor is outside the population. The individuals with an immigrant ancestor constitute a distinguished family and we define exchangeable distinguished coalescent processes as a model for genealogy with immigration, focusing on simple distinguished coalescents, i.e. such that when a coagulation occurs all the blocks involved merge as a single block. These processes are characterized by two finite measures on [0, 1] denoted by M = (Λ0, Λ1). We call them M-coalescents. We show by martingale arguments that the condition of coming down from infinity for the M-coalescent coincides with that obtained by Schweinsberg for the Λ-coalescent. In the same vein as Bertoin and Le Gall, M-coalescents are associated with some stochastic flows. The superprocess embedded can be viewed as a generalized Fleming-Viot process with immigration. The measures Λ0 and Λ1 respectively specify the reproduction and the immigration. The coming down from infinity of the M-coalescent will be interpreted as the initial types extinction: after a certain time all individuals are immigrant children.
We study Markov measures and p-adic random walks with the use of states on the Cuntz algebras Op. Via the Gelfand–Naimark–Segal construction, these come from families of representations of Op. We prove that these representations reflect selfsimilarity especially well. In this paper, we consider a Cuntz–Krieger type algebra where the adjacency matrix depends on a parameter q ( q=1 is the case of Cuntz–Krieger algebra). This is an ongoing work generalizing a construction of certain measures associated to random walks on graphs.
Following Baurdoux and Kyprianou (2008) we consider the McKean stochastic game, a game version of the McKean optimal stopping problem (American put), driven by a spectrally negative Lévy process. We improve their characterisation of a saddle point for this game when the driving process has a Gaussian component and negative jumps. In particular, we show that the exercise region of the minimiser consists of a singleton when the penalty parameter is larger than some threshold and ‘thickens’ to a full interval when the penalty parameter drops below this threshold. Expressions in terms of scale functions for the general case and in terms of polynomials for a specific jump diffusion case are provided.
It is well know that the expected exponentially discounted total reward for a stochastic process can also be defined as the expected total undiscounted reward earned before an independent exponential stopping time (let us call this the stopped reward). Feinberg and Fei (2009) recently showed that the variance of the discounted reward is smaller than the variance of the stopped reward. We strengthen this result to show that the discounted reward is smaller than the stopped reward in the convex ordering sense.
In this paper we study the excursion time of a Brownian motion with drift outside a corridor by using a four-state semi-Markov model. In mathematical finance, these results have an important application in the valuation of double-barrier Parisian options. We subsequently obtain an explicit expression for the Laplace transform of its price.
In this paper we consider a single-server queue with Lévy input, and, in particular, its workload process (Qt)t≥0, focusing on its correlation structure. With the correlation function defined as r(t):= cov(Q0, Qt) / varQ0(assuming that the workload process is in stationarity at time 0), we first study its transform ∫0∞r(t)e-ϑtdt, both for when the Lévy process has positive jumps and when it has negative jumps. These expressions allow us to prove that r(·) is positive, decreasing, and convex, relying on the machinery of completely monotone functions. For the light-tailed case, we estimate the behavior of r(t) for large t. We then focus on techniques to estimate r(t) by simulation. Naive simulation techniques require roughly (r(t))-2 runs to obtain an estimate of a given precision, but we develop a coupling technique that leads to substantial variance reduction (the required number of runs being roughly (r(t))-1). If this is augmented with importance sampling, it even leads to a logarithmically efficient algorithm.
We analyze a class of signal-to-interference-and-noise-ratio (SINR) random graphs. These random graphs arise in the modeling packet transmissions in wireless networks. In contrast to previous studies on SINR graphs, we consider both a space and a time dimension. The spatial aspect originates from the random locations of the network nodes in the Euclidean plane. The time aspect stems from the random transmission policy followed by each network node and from the time variations of the wireless channel characteristics. The combination of these random space and time aspects leads to fluctuations of the SINR experienced by the wireless channels, which in turn determine the progression of packets in space and time in such a network. In this paper we study optimal paths in such wireless networks in terms of first passage percolation on this random graph. We establish both ‘positive’ and ‘negative’ results on the associated time constant. The latter determines the asymptotics of the minimum delay required by a packet to progress from a source node to a destination node when the Euclidean distance between the two tends to ∞. The main negative result states that this time constant is infinite on the random graph associated with a Poisson point process under natural assumptions on the wireless channels. The main positive result states that, when adding a periodic node infrastructure of arbitrarily small intensity to the Poisson point process, the time constant is positive and finite.
We analyze the mean cost of the partial match queries in random two-dimensional quadtrees. The method is based on fragmentation theory. The convergence is guaranteed by a coupling argument of Markov chains, whereas the value of the limit is computed as the fixed point of an integral equation.
We show how the extremal behavior of d-variate Archimedean copulas can be deduced from their stochastic representation as the survival dependence structure of an ℓ1-symmetric distribution (see McNeil and Nešlehová (2009)). We show that the extremal behavior of the radial part of the representation is determined by its Williamson d-transform. This leads in turn to simple proofs and extensions of recent results characterizing the domain of attraction of Archimedean copulas, their upper and lower tail-dependence indices, as well as their associated threshold copulas. We outline some of the practical implications of their results for the construction of Archimedean models with specific tail behavior and give counterexamples of Archimedean copulas whose coefficient of lower tail dependence does not exist.
We consider a branching process with Poissonian immigration where individuals have inheritable types. At rate θ, new individuals singly enter the total population and start a new population which evolves like a supercritical, homogeneous, binary Crump-Mode-Jagers process: individuals have independent and identically distributed lifetime durations (nonnecessarily exponential) during which they give birth independently at a constant rate b. First, using spine decomposition, we relax previously known assumptions required for almost-sure convergence of the total population size. Then, we consider three models of structured populations: either all immigrants have a different type, or types are drawn in a discrete spectrum or in a continuous spectrum. In each model, the vector (P1, P2,…) of relative abundances of surviving families converges almost surely. In the first model, the limit is the GEM distribution with parameter θ / b.
We consider a generalized form of the coupon collection problem in which a random number, S, of balls is drawn at each stage from an urn initially containing n white balls (coupons). Each white ball drawn is colored red and returned to the urn; red balls drawn are simply returned to the urn. The question considered is then: how many white balls (uncollected coupons) remain in the urn after the kn draws? Our analysis is asymptotic as n → ∞. We concentrate on the case when kn draws are made, where kn / n → ∞ (the superlinear case), although we sketch known results for other ranges of kn. A Gaussian limit is obtained via a martingale representation for the lower superlinear range, and a Poisson limit is derived for the upper boundary of this range via the Chen-Stein approximation.
A nanocomponent is a collection of atoms arranged to a specific design in order to achieve a desired function with an acceptable performance and reliability. The type of atoms, the manner in which they are arranged within the nanocomponent, and their interrelationship have a direct effect on the nanocomponent's reliability (survival) function. In this paper we propose models based on the notion of a copula that are used to describe the relationship between the atoms of a nanocomponent. Having defined these models, we go on to construct a ‘nanocomponent’ model in order to obtain the reliability function of a nanocomponent.
We consider a d-dimensional reflected fractional Brownian motion (RFBM) process on the positive orthant S = R+d, with drift r0 ∈ Rd and Hurst parameter H ∈ (½, 1). Under a natural stability condition on the drift vector r0 and reflection directions, we establish a return time result for the RFBM process Z; that is, for some δ, κ > 0, supx∈BEx[τB(δ)] < ∞, where B = {x ∈ S : |x| ≤ κ} and τB(δ) = inf{t ≥ δ : Z(t) ∈ B}. Similar results are known for reflected processes driven by standard Brownian motions, and our result can be viewed as their FBM counterpart. Our motivation for this study is that RFBM appears as a limiting workload process for fluid queueing network models fed by a large number of heavy-tailed ON/OFF sources in heavy traffic.
Start with a compact set K ⊂ Rd. This has a random number of daughter sets, each of which is a (rotated and scaled) copy of K and all of which are inside K. The random mechanism for producing daughter sets is used independently on each of the daughter sets to produce the second generation of sets, and so on, repeatedly. The random fractal set F is the limit, as n goes to ∞, of the union of the nth generation sets. In addition, K has a (suitable, random) mass which is divided randomly between the daughter sets, and this random division of mass is also repeated independently, indefinitely. This division of mass will correspond to a random self-similar measure on F. The multifractal spectrum of this measure is studied here. Our main contributions are dealing with the geometry of realisations in Rd and drawing systematically on known results for general branching processes. In this way we generalise considerably the results of Arbeiter and Patzschke (1996) and Patzschke (1997).
We consider the asymptotic variance of the departure counting process D(t) of the GI/G/1 queue; D(t) denotes the number of departures up to time t. We focus on the case where the system load ϱ equals 1, and prove that the asymptotic variance rate satisfies limt→∞varD(t) / t = λ(1–2/π)(ca2 + cs2), where λ is the arrival rate, and ca2 and cs2 are squared coefficients of variation of the interarrival and service times, respectively. As a consequence, the departures variability has a remarkable singularity in the case in which ϱ equals 1, in line with the BRAVO (balancing reduces asymptotic variance of outputs) effect which was previously encountered in finite-capacity birth-death queues. Under certain technical conditions, our result generalizes to multiserver queues, as well as to queues with more general arrival and service patterns. For the M/M/1 queue, we present an explicit expression of the variance of D(t) for any t.