To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study a flexible class of finite-disc process models with interaction between the discs. We let 𝒰 denote the random set given by the union of discs, and use for the disc process an exponential family density with the canonical sufficient statistic depending only on geometric properties of 𝒰 such as the area, perimeter, Euler-Poincaré characteristic, and the number of holes. This includes the quermass-interaction process and the continuum random-cluster model as special cases. Viewing our model as a connected component Markov point process, and thereby establishing local and spatial Markov properties, becomes useful for handling the problem of edge effects when only 𝒰 is observed within a bounded observation window. The power tessellation and its dual graph become major tools when establishing inclusion-exclusion formulae, formulae for computing geometric characteristics of 𝒰, and stability properties of the underlying disc process density. Algorithms for constructing the power tessellation of 𝒰 and for simulating the disc process are discussed, and the software is made public available.
In the classic Dubins-Savage subfair primitive casino gambling problem, the gambler can stake any amount in his possession, winning (1 − r)/r times the stake with probability w and losing the stake with probability 1 − w, 0 ≤ w ≤ r ≤ 1. The gambler seeks to maximize the probability of reaching a fixed fortune (the goal) by gambling repeatedly with suitably chosen stakes. This problem has recently been extended in a unifying framework to account for limited playing time as well as future discounting, under which bold play is known to be optimal provided that w ≤ ½ ≤ r. This paper is concerned with a further extension of the Dubins-Savage gambling problem involving time-dependent parameters, and shows that bold play not only maximizes the probability of reaching the goal, but also stochastically minimizes the number of plays needed to reach the goal. As a result, bold play also maximizes the expected utility, where the utility at the goal is only required to be monotone decreasing with respect to the number of plays needed to reach the goal. It is further noted that bold play remains optimal even when the time-dependent parameters are random.
The problem of finding the probability distribution of the first hitting time of a double integral process (DIP) such as the integrated Wiener process (IWP) has been an important and difficult endeavor in stochastic calculus. It has applications in many fields of physics (first exit time of a particle in a noisy force field) or in biology and neuroscience (spike time distribution of an integrate-and-fire neuron with exponentially decaying synaptic current). The only results available are an approximation of the stationary mean crossing time and the distribution of the first hitting time of the IWP to a constant boundary. We generalize these results and find an analytical formula for the first hitting time of the IWP to a continuous piecewise-cubic boundary. We use this formula to approximate the law of the first hitting time of a general DIP to a smooth curved boundary, and we provide an estimation of the convergence of this method. The accuracy of the approximation is computed in the general case for the IWP and the effective calculation of the crossing probability can be carried out through a Monte Carlo method.
In this paper we show that the continuum-time version of the minority game satisfies the criteria for the application of a theorem on the existence of an invariant measure. We consider the special case of a game with a ‘sufficiently’ asymmetric initial condition, where the number of possible choices for each individual is S = 2 and Γ < +∞. An upper bound for the asymptotic behavior, as the number of agents grows to infinity, of the waiting time for reaching the stationary state is then obtained.
For a linear random field (linear p-parameter stochastic process) generated by a dependent random field with zero mean and finite qth moments (q>2p), we give sufficient conditions that the linear random field converges weakly to a multiparameter standard Brownian motion if the corresponding dependent random field does so.
A random tessellation of ℝd is said to be homogeneous if its distribution is invariant under all shifts of ℝd. The iteration of homogeneous random tessellations is described in a new manner that makes it evident that the resulting random tessellation is homogeneous again. Furthermore, a tessellation-valued process is constructed, the random states of which are homogeneous random tessellations stable under iteration (STIT). It can be interpreted as a process of subsequent division of cells.
The TCP window size process can be modeled as a piecewise-deterministic Markov process that increases linearly and experiences downward jumps at Poisson times. We present a transient analysis of this window size process. Our main result is the Laplace transform of the transient moments. Formulae for the integer and fractional moments are derived, as well as an explicit characterization of the speed of convergence to steady state. Central to our approach are the infinitesimal generator and Dynkin's martingale.
We show that the positive Wiener-Hopf factor of a Lévy process with positive jumps having a rational Fourier transform is a rational function itself, expressed in terms of the parameters of the jump distribution and the roots of an associated equation. Based on this, we give the closed form of the ruin probability for a Lévy process, with completely arbitrary negatively distributed jumps, and finite intensity positive jumps with a distribution characterized by a rational Fourier transform. We also obtain results for the ladder process and its Laplace exponent. A key role is played by the analytic properties of the characteristic exponent of the process and by a Baxter-Donsker-type formula for the positive factor that we derive.
Correlated random walks provide an elementary model for processes that exhibit directional reinforcement behavior. This paper develops optimal multiple stopping strategies - buy/sell rules - for correlated random walks. The work extends previous results given in Allaart and Monticino (2001) by considering random step sizes and allowing possibly negative reinforcement of the walk's current direction. The optimal strategies fall into two general classes - cases where conservative buy-and-hold type strategies are optimal and cases for which it is optimal to follow aggressive trading strategies of successively buying and selling the commodity depending on whether the price goes up or down. Simulation examples are given based on a stock index fund to illustrate the variation in return possible using the theoretically optimal stop rules compared to simpler buy-and-hold strategies.
Let S0 := 0 and Sk := ξ1 + ··· + ξk for k ∈ ℕ := {1, 2, …}, where {ξk : k ∈ ℕ} are independent copies of a random variable ξ with values in ℕ and distribution pk := P{ξ = k}, k ∈ ℕ. We interpret the random walk {Sk : k = 0, 1, 2, …} as a particle jumping to the right through integer positions. Fix n ∈ ℕ and modify the process by requiring that the particle is bumped back to its current state each time a jump would bring the particle to a state larger than or equal to n. This constraint defines an increasing Markov chain {Rk(n) : k = 0, 1, 2, …} which never reaches the state n. We call this process a random walk with barrier n. Let Mn denote the number of jumps of the random walk with barrier n. This paper focuses on the asymptotics of Mn as n tends to ∞. A key observation is that, under p1 > 0, {Mn : n ∈ ℕ} satisfies the distributional recursion M1 = 0 and for n = 2, 3, …, where In is independent of M2, …, Mn−1 with distribution P{In = k} = pk / (p1 + ··· + pn−1), k ∈ {1, …, n − 1}. Depending on the tail behavior of the distribution of ξ, several scalings for Mn and corresponding limiting distributions come into play, including stable distributions and distributions of exponential integrals of subordinators. The methods used in this paper are mainly probabilistic. The key tool is to compare (couple) the number of jumps, Mn, with the first time, Nn, when the unrestricted random walk {Sk : k = 0, 1, …} reaches a state larger than or equal to n. The results are applied to derive the asymptotics of the number of collision events (that take place until there is just a single block) for β(a, b)-coalescent processes with parameters 0 < a < 2 and b = 1.
In this paper we present a robust numerical method to compute the scale function W(q)(x) of a general spectrally negative Lévy process (X, P). The method is based on the Esscher transform of measure Pν under which X is taken and the scale function is determined. This change of measure makes it possible for the scale function to be bounded and, hence, makes numerical computation easy, fast, and stable. Working under the new measure Pν and using the method of Abate and Whitt (1992) and Choudhury, Lucantoni, and Whitt (1994), we give a fast stable numerical algorithm for the computation of W(q)(x).
This paper revisits a general optimal stopping problem that often appears as a special case in some finance applications. The problem is essentially of the same form as the investment-timing problem of McDonald and Siegel (1986) in which the underlying processes are two correlated geometric Brownian motions (GBMs) with drifts less than the discount rate. By contrast, we attempt to analyze the underlying optimal stopping problem to its full generality without imposing any restriction on the drifts of the GBMs. By extending the first passage time approach of Xia and Zhou (2007) to the current context, we manage to obtain a complete and explicit characterization of the solution to the problem on all possible drift domains. Our analysis leads to a new and interesting observation that the underlying optimal stopping problem admits a two-sided optimal continuation region on some certain parameter domains.
This article proves that the on-off renewal process with Weibull sojourn times satisfies the large deviation principle on a nonlinear scale. Unusually, its rate function is not convex. Apart from on a compact set, the rate function is infinite, which enables us to construct natural processes that satisfy the large deviation principle with nontrivial rate functions on more than one time scale.
In this paper we study the asymptotic tail probabilities of sums of subexponential, nonnegative random variables, which are dependent according to certain general structures with tail independence. The results show that the subexponentiality of the summands eliminates the impact of the dependence on the tail behavior of the sums.
The copula of a multivariate distribution is the distribution transformed so that one-dimensional marginal distributions are uniform. We review a different transformation of a multivariate distribution which yields standard Pareto for the marginal distributions, and we call the resulting distribution the Pareto copula. Use of the Pareto copula has a certain claim to naturalness when considering asymptotic limit distributions for sums, maxima, and empirical processes. We discuss implications for aggregation of risk and offer some examples.
Assume that there are k types of insurance contracts in an insurance company. The ith related claims are denoted by {Xij, j ≥ 1}, i = 1,…,k. In this paper we investigate large deviations for both partial sums S(k; n1,…,nk) = ∑i=1k ∑j=1niXij and random sums S(k; t) = ∑i=1k ∑j=1Ni (t)Xij, where Ni(t), i = 1,…,k, are counting processes for the claim number. The obtained results extend some related classical results.
Generalized local mean normal measures μz, z ∈ Rd, are introduced for a nonstationary process X of convex particles. For processes with strictly convex particles it is then shown that X is weakly stationary and weakly isotropic if and only if μz is rotation invariant for all z ∈ Rd. The paper is concluded by extending this result to processes of cylinders, generalizing Theorem 1 of Schneider (2003).
In this paper we consider a tessellation V generated by a homogeneous Poisson process Φ in Rd and, furthermore, the random set of spheres with centres being the points in Φ and having radii equal to half the distance to their closest neighbouring point in Φ. In Rd we give an integral formula for the correlation between the volume of the typical cell and the volume of the sphere in the typical cell, and we also show that this correlation is strictly positive. Furthermore, on the real line we give an analytical expression for the correlation, and in the plane and in space we give simplified integral formulae. Numerical values for the correlation for d = 2,…,7 are also given.
This paper treats a simple model, which can be exactly solved, motivated by the back-and-forth motion of ocean bacteria. In particular, the probability is determined that a bacterium moving randomly along a fluid line through the origin in a linear shear flow hits the origin before time t.
In many applications, such as remote sensing or wave slamming on ships and offshore structures, it is important to have a good model for wave slope. Today, most models are based on the assumption that the sea surface is well described by a Gaussian random field. However, since the Gaussian model does not capture several important features of real ocean waves, e.g. the asymmetry of crests and troughs, it may lead to unconservative safety estimates. An alternative is to use a stochastic Lagrangian wave model. Few studies have been carried out on the Lagrangian model; in particular, very little is known about its probabilistic properties. Therefore, in this paper we derive expressions for the level-crossing intensity of the Lagrangian sea surface, which has the interpretation of wave intensity, as well as the distribution of the wave slope at an arbitrary crossing. These results are then compared to the corresponding intensity and distribution of slope for the Gaussian model.