To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We specify a model for a catastrophe loss index, where the initial estimate of each catastrophe loss is reestimated immediately by a positive martingale starting from the random time of loss occurrence. We consider the pricing of catastrophe insurance options written on the loss index and obtain option pricing formulae by applying Fourier transform techniques. An important advantage is that our methodology works for loss distributions with heavy tails, which is the appropriate tail behavior for catastrophe modeling. We also discuss the case when the reestimation factors are given by positive affine martingales and provide a characterization of positive affine local martingales.
Let Wn be a simple Markov chain on the integers. Suppose that Xn is a simple Markov chain on the integers whose transition probabilities coincide with those of Wn off a finite set. We prove that there is an M > 0 such that the Markov chain Wn and the joint distributions of the first hitting time and first hitting place of Xn started at the origin for the sets {-M, M} and {-(M + 1), (M + 1)} algorithmically determine the transition probabilities of Xn.
Most metrics between finite point measures currently used in the literature have the flaw that they do not treat differing total masses in an adequate manner for applications. This paper introduces a new metric d̅1 that combines positional differences of points under a closest match with the relative difference in total mass in a way that fixes this flaw. A comprehensive collection of theoretical results about d̅1 and its induced Wasserstein metric d̅2 for point process distributions are given, including examples of useful d̅1-Lipschitz continuous functions, d̅2 upper bounds for the Poisson process approximation, and d̅2 upper and lower bounds between distributions of point processes of independent and identically distributed points. Furthermore, we present a statistical test for multiple point pattern data that demonstrates the potential of d̅1 in applications.
This paper is concerned with the finiteness and large-time behaviour of moments of the overshoot and undershoot of a high level, and of their moment generating functions (MGFs), for a Lévy process which drifts to -∞ almost surely. This provides information relevant to quantities associated with the ruin of an insurance risk process. Results of Klüppelberg, Kyprianou, and Maller (2004) and Doney and Kyprianou (2006) for asymptotic overshoot and undershoot distributions in the class of Lévy processes with convolution equivalent canonical measures are shown to have moment and MGF convergence extensions.
The present paper generalises some results for spectrally negative Lévy processes to the setting of Markov additive processes (MAPs). A prominent role is assumed by the first passage times, which will be determined in terms of their Laplace transforms. These have the form of a phase-type distribution, with a rate matrix that can be regarded as an inverse function of the cumulant matrix. A numerically stable iteration to compute this matrix is given. The theory is first developed for MAPs without positive jumps and then extended to include positive jumps having phase-type distributions. Numerical and analytical examples show agreement with existing results in special cases.
Nanosystems are devices that are in the size range of a billionth of a meter (1 x 10-9) and therefore are built necessarily from individual atoms. The one-dimensional nanosystems or linear nanosystems cover all the nanosized systems which possess one dimension that exceeds the other two dimensions, i.e. extension over one dimension is predominant over the other two dimensions. Here only two of the dimensions have to be on the nanoscale (less than 100 nanometers). In this paper we consider the structural relationship between a linear nanosystem and its atoms acting as components of the nanosystem. Using such information, we then assess the nanosystem's limiting reliability which is, of course, probabilistic in nature. We consider the linear nanosystem at a fixed moment of time, say the present moment, and we assume that the present state of the linear nanosystem depends only on the present states of its atoms.
Coupons are collected one at a time from a population containing n distinct types of coupon. The process is repeated until all n coupons have been collected and the total number of draws, Y, from the population is recorded. It is assumed that the draws from the population are independent and identically distributed (draws with replacement) according to a probability distribution X with the probability that a type-i coupon is drawn being P(X = i). The special case where each type of coupon is equally likely to be drawn from the population is the classic coupon collector problem. We consider the asymptotic distribution Y (appropriately normalized) as the number of coupons n → ∞ under general assumptions upon the asymptotic distribution of X. The results are proved by studying the total number of coupons, W(t), not collected in t draws from the population and noting that P(Y ≤ t) = P(W(t) = 0). Two normalizations of Y are considered, the choice of normalization depending upon whether or not a suitable Poisson limit exists for W(t). Finally, extensions to the K-coupon collector problem and the birthday problem are given.
We establish a functional large deviation principle and a functional moderate deviation principle for Markov-modulated risk models with reinsurance by constructing an exponential martingale approach. Lundberg's estimate of the ruin time is also presented.
In this paper we introduce Lévy-driven Cox point processes (LCPs) as Cox point processes with driving intensity function Λ defined by a kernel smoothing of a Lévy basis (an independently scattered, infinitely divisible random measure). We also consider log Lévy-driven Cox point processes (LLCPs) with Λ equal to the exponential of such a kernel smoothing. Special cases are shot noise Cox processes, log Gaussian Cox processes, and log shot noise Cox processes. We study the theoretical properties of Lévy-based Cox processes, including moment properties described by nth-order product densities, mixing properties, specification of inhomogeneity, and spatio-temporal extensions.
We give a functional central limit theorem for spatial birth and death processes based on the representation of such processes as solutions of stochastic equations. For any bounded and integrable function in Euclidean space, we define a family of processes which is obtained by integrals of this function with respect to the centered and scaled spatial birth and death process with constant death rate. We prove that this family converges weakly to a Gaussian process as the scale parameter goes to infinity. We do not need the birth rates to have a finite range of interaction. Instead, we require that the birth rates have a range of interaction that decays polynomially. In order to show the convergence of the finite-dimensional distributions of the above processes, we extend Penrose's multivariate spatial central limit theorem. An example of the asymptotic normalities of the time-invariance estimators for the birth rates of spatial point processes is given.
Weconsider a random algebraic polynomial of the form Pn,θ,α(t)=θ0ξ0+θ1ξ1t+⋯+θnξntn, where ξk, k=0,1,2,…,n have identical symmetric stable distribution with index α, 0<α≤2. First, for a general form of θk,α≡θk we derive the expected number of real zeros of Pn,θ,α(t). We then show that our results can be used for special choices of θk. In particular, we obtain the above expected number of zeros when . The latter generate a polynomial with binomial elements which has recently been of significant interest and has previously been studied only for Gaussian distributed coefficients. We see the effect of α on increasing the expected number of zeros compared with the special case of Gaussian coefficients.
It is known that for a given and a given strictly stationary sequence of random variables, the p-norms of the partial sums are bounded if and only if the sequence consists of successive differences from another strictly stationary sequence with finite p-norm. Here this is generalized to random fields, and the assumption of stationarity is relaxed. The index is included.
A Riesz space-fractional reaction–dispersion equation (RSFRDE) is obtained from the classical reaction–dispersion equation (RDE) by replacing the second-order space derivative with a Riesz derivative of order β∈(1,2]. In this paper, using Laplace and Fourier transforms, we obtain the fundamental solution for a RSFRDE. We propose an explicit finite-difference approximation for a RSFRDE in a bounded spatial domain, and analyse its stability and convergence. Some numerical examples are presented.
While the convergence properties of many sampling selection methods can be proven, there is one particular sampling selection method introduced in Baker (1987), closely related to ‘systematic sampling’ in statistics, that has been exclusively treated on an empirical basis. The main motivation of the paper is to start to study formally its convergence properties, since in practice it is by far the fastest selection method available. We will show that convergence results for the systematic sampling selection method are related to properties of peculiar Markov chains.
Using fluctuation theory, we solve the two-sided exit problem and identify the ruin probability for a general spectrally negative Lévy risk process with tax payments of a loss-carry-forward type. We study arbitrary moments of the discounted total amount of tax payments and determine the surplus level to start taxation which maximises the expected discounted aggregate income for the tax authority in this model. The results considerably generalise those for the Cramér-Lundberg risk model with tax.
We extend a result due to Zazanis (1992) on the analyticity of the expectation of suitable functionals of homogeneous Poisson processes with respect to the intensity of the process. As our main result, we provide Monte Carlo estimators for the derivatives. We apply our results to stochastic models which are of interest in stochastic geometry and insurance.
The paper deals with the asymptotic behavior of the bridge of a Gaussian process conditioned to stay in n fixed points at n fixed past instants. In particular, functional large deviation results are stated for small time. Several examples are considered: integrated or not fractional Brownian motions and m-fold integrated Brownian motion. As an application, the asymptotic behavior of the exit probability is studied and used for the practical purpose of the numerical computation, via Monte Carlo methods, of the hitting probability up to a given time of the unpinned process.
We consider a stochastic SIS model for the spread of an epidemic amongst a population of n individuals that are equally spaced upon the circumference of a circle. Whilst infectious, an individual, i say, makes both local and global infectious contacts at the points of homogeneous Poisson point processes. Global contacts are made uniformly at random with members of the entire population, whilst local contacts are made according to a contact distribution centred upon the infective. Individuals at the end of their infectious period return to the susceptible state and can be reinfected. The emphasis of the paper is on asymptotic results as the population size n → ∞. Therefore, a contact process with global infection is introduced representing the limiting behaviour as n → ∞ of the circle epidemics. A branching process approximation for the early stages of the epidemic is derived and the endemic equilibrium of a major outbreak is obtained. Furthermore, assuming exponential infectious periods, the probability of a major epidemic outbreak and the proportion of the population infectious in the endemic equilibrium are shown to satisfy the same equation which characterises the epidemic process.
We study the exponential utility indifference valuation of a contingent claim B in an incomplete market driven by two Brownian motions. The claim depends on a nontradable asset stochastically correlated with the traded asset available for hedging. We use martingale arguments to provide upper and lower bounds, in terms of bounds on the correlation, for the value VB of the exponential utility maximization problem with the claim B as random endowment. This yields an explicit formula for the indifference value b of B at any time, even with a fairly general stochastic correlation. Earlier results with constant correlation are recovered and extended. The reason why all this works is that, after a transformation to the minimal martingale measure, the value VB enjoys a monotonicity property in the correlation between tradable and nontradable assets.
The diffusion-generator approximation technique developed by De Iorio and Griffiths (2004a) is a very useful method of constructing importance-sampling proposal distributions. Being based on general mathematical principles, the method can be applied to various models in population genetics. In this paper we extend the technique to the neutral coalescent model with recombination, thus obtaining novel sampling distributions for the two-locus model. We consider the case with subdivided population structure, as well as the classic case with only a single population. In the latter case we also consider the importance-sampling proposal distributions suggested by Fearnhead and Donnelly (2001), and show that their two-locus distributions generally differ from ours. In the case of the infinitely-many-alleles model, our approximate sampling distributions are shown to be generally closer to the true distributions than are Fearnhead and Donnelly's.