To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we obtain the exact asymptotics of the ruin probability for the integrated Gaussian process with force of interest. The results obtained are consistent with those obtained for the case in which there is no force of interest.
We study the optimal portfolio problem for an insider, in the case where the performance is measured in terms of the logarithm of the terminal wealth minus a term measuring the roughness and the growth of the portfolio. We give explicit solutions in some cases. Our method uses stochastic calculus of forward integrals.
We derive an asymptotic expansion for the distribution of a compound sum of independent random variables, all having the same rapidly varying subexponential distribution. The examples of a Poisson and geometric number of summands serve as an illustration of the main result. Complete calculations are done for a Weibull distribution, with which we derive, as examples and without any difficulties, seven-term expansions.
Corrected random walk approximations to continuous-time optimal stopping boundaries for Brownian motion, first introduced by Chernoff and Petkau, have provided powerful computational tools in option pricing and sequential analysis. This paper develops the theory of these second-order approximations and describes some new applications.
In this paper we present closed form solutions of some discounted optimal stopping problems for the maximum process in a model driven by a Brownian motion and a compound Poisson process with exponential jumps. The method of proof is based on reducing the initial problems to integro-differential free-boundary problems, where the normal-reflection and smooth-fit conditions may break down and the latter then replaced by the continuous-fit condition. We show that, under certain relationships on the parameters of the model, the optimal stopping boundary can be uniquely determined as a component of the solution of a two-dimensional system of nonlinear ordinary differential equations. The obtained results can be interpreted as pricing perpetual American lookback options with fixed and floating strikes in a jump-diffusion model.
The Vardi casino with parameter 0 < c < 1 consists of infinitely many tables indexed by their odds, each of which returns the same (negative) expected winnings -c per dollar. A gambler seeks to maximize the probability of reaching a fixed fortune by gambling repeatedly with suitably chosen stakes and tables (odds). The optimal strategy is derived explicitly subject to the constraint that the gambler is allowed to play only a given finite number of times. Some properties of the optimal strategy are also discussed.
We investigate the large scale behaviour of a Lévy process whose jump magnitude follows a stable law with spherically inhomogenous scaling coefficients. Furthermore, the jumps are dragged in the spherical direction by a dynamical system which has an attractor.
We develop an integration by parts technique for point processes, with application to the computation of sensitivities via Monte Carlo simulations in stochastic models with jumps. The method is applied to density estimation with respect to the Lebesgue measure via a modified kernel estimator which is less sensitive to variations of the bandwidth parameter than standard kernel estimators. This applies to random variables whose densities are not analytically known and requires the knowledge of the point process jump times.
Suppose we are given the free product V of a finite family of finite or countable sets (Vi)i∈∮ and probability measures on each Vi, which govern random walks on it. We consider a transient random walk on the free product arising naturally from the random walks on the Vi. We prove the existence of the rate of escape with respect to the block length, that is, the speed at which the random walk escapes to infinity, and furthermore we compute formulae for it. For this purpose, we present three different techniques providing three different, equivalent formulae.
We explicitly calculate the dynamic allocation indices (i.e. the Gittins indices) for multi-armed Bandit processes driven by superdiffusive noise sources. This class of model generalizes former results derived by Karatzas for diffusive processes. In particular, the Gittins indices do, in this soluble class of superdiffusive models, explicitly depend on the noise state.
Intersection densities are introduced for a large class of nonstationary Poisson processes of hypersurfaces and inequalities for them are proved. In doing so, similar results from both Wieacker (1986) and Schneider (2003) are summarized in one theorem and the concept of an associated zonoid of a Poisson process of hypersurfaces is generalized to a nonstationary setting.
We study the ruin probability where the claim sizes are modeled by a stationary ergodic symmetric α-stable process. We exploit the flow representation of such processes, and we consider the processes generated by conservative flows. We focus on two classes of conservative α-stable processes (one discrete-time and one continuous-time), and give results for the order of magnitude of the ruin probability as the initial capital goes to infinity. We also prove a solidarity property for null-recurrent Markov chains as an auxiliary result, which might be of independent interest.
We study the perpetual American option characteristics in the case where the underlying dynamics involve a Brownian motion and a point process with a stochastic intensity. No assumption on the distribution of the jump size is made and we work with an arbitrary positive or negative jump. After proving the existence of an optimal stopping time for the problem and characterizing it as the hitting time of an optimal boundary, we provide closed-form formulae for the option value, as well as for the Laplace transform of the optimal stopping time. These results are then applied to the analysis of a real option problem when considering the impact of a fundamental and brutal change in the investment project environment. The consequences of this impact, that can seriously modify, positively or negatively, the project's future cash flows and therefore the investment decision, are illustrated by numerical examples.
We provide a distributional study of the solution to the classical control problem due to De Finetti (1957), Gerber (1969), Azcue and Muler (2005), and Avram et al. (2007), which concerns the optimal payment of dividends from an insurance risk process prior to ruin. Specifically, we build on recent work in the actuarial literature concerning calculations of the nth moment of the net present value of dividends paid out in the optimal strategy as well as the moments of the deficit at ruin and the Laplace transform of the red period. The calculations we present go much further than the existing literature, in that our calculations are valid for a general spectrally negative Lévy process as opposed to the classical Cramér–Lundberg process with exponentially distributed jumps. Moreover, the technique we use appeals principally to excursion theory rather than integro-differential equations and, for the case of the nth moment of the net present value of dividends, makes a new link with the distribution of integrated exponential subordinators.
For a Markov renewal process where the time parameter is discrete, we present a novel method for calculating the asymptotic variance. Our approach is based on the key renewal theorem and is applicable even when the state space of the Markov chain is countably infinite.
In this short paper, we show how fluctuation identities for Lévy processes with no positive jumps yield the distribution of the present value of dividends paid until ruin in a Lévy insurance risk model with a dividend barrier.
In this paper, we obtain a closed form for the covariance function of a general stationary regenerative process. It is used to derive exact asymptotics of the covariance function of stationary ON/OFF and workload processes, when ON and OFF periods are heavy-tailed and mutually dependent. The case of a G/G/1/0 queueing system with heavy-tailed arrival and/or service times is studied in detail.
In this paper we consider the problem of first-crossing from above for a partial sums process m+St, t ≥ 1, with the diagonal line when the random variables Xt, t ≥ 1, are independent but satisfying nonstationary laws. Specifically, the distributions of all the Xts belong to a common parametric family of arithmetic distributions, and this family of laws is assumed to be stable by convolution. The key result is that the first-crossing time distribution and the associated ballot-type formula rely on an underlying polynomial structure, called the generalized Abel-Gontcharoff structure. In practice, this property advantageously provides simple and efficient recursions for the numerical evaluation of the probabilities of interest. Several applications are then presented, for constant and variable parameters.
We introduce a new class of spatial-temporal point processes based on Voronoi tessellations. At each step of such a process, a point is chosen at random according to a distribution determined by the associated Voronoi cells. The point is then removed, and a new random point is added to the configuration. The dynamics are simple and intuitive and could be applied to modelling natural phenomena. We prove ergodicity of these processes under wide conditions.
We characterize the Lyapunov exponent and ergodicity of nonlinear stochastic recursion models, including nonlinear AR-GARCH models, in terms of an easily defined, uniformly ergodic process. Properties of this latter process, known as the collapsed process, also determine the existence of moments for the stochastic recursion when it is stationary. As a result, both the stability of a given model and the existence of its moments may be evaluated with relative ease. The method of proof involves piggybacking a Foster-Lyapunov drift condition on certain characteristic behavior of the collapsed process.