To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Suppose we are given the free product V of a finite family of finite or countable sets (Vi)i∈∮ and probability measures on each Vi, which govern random walks on it. We consider a transient random walk on the free product arising naturally from the random walks on the Vi. We prove the existence of the rate of escape with respect to the block length, that is, the speed at which the random walk escapes to infinity, and furthermore we compute formulae for it. For this purpose, we present three different techniques providing three different, equivalent formulae.
We explicitly calculate the dynamic allocation indices (i.e. the Gittins indices) for multi-armed Bandit processes driven by superdiffusive noise sources. This class of model generalizes former results derived by Karatzas for diffusive processes. In particular, the Gittins indices do, in this soluble class of superdiffusive models, explicitly depend on the noise state.
Intersection densities are introduced for a large class of nonstationary Poisson processes of hypersurfaces and inequalities for them are proved. In doing so, similar results from both Wieacker (1986) and Schneider (2003) are summarized in one theorem and the concept of an associated zonoid of a Poisson process of hypersurfaces is generalized to a nonstationary setting.
We study the ruin probability where the claim sizes are modeled by a stationary ergodic symmetric α-stable process. We exploit the flow representation of such processes, and we consider the processes generated by conservative flows. We focus on two classes of conservative α-stable processes (one discrete-time and one continuous-time), and give results for the order of magnitude of the ruin probability as the initial capital goes to infinity. We also prove a solidarity property for null-recurrent Markov chains as an auxiliary result, which might be of independent interest.
We study the perpetual American option characteristics in the case where the underlying dynamics involve a Brownian motion and a point process with a stochastic intensity. No assumption on the distribution of the jump size is made and we work with an arbitrary positive or negative jump. After proving the existence of an optimal stopping time for the problem and characterizing it as the hitting time of an optimal boundary, we provide closed-form formulae for the option value, as well as for the Laplace transform of the optimal stopping time. These results are then applied to the analysis of a real option problem when considering the impact of a fundamental and brutal change in the investment project environment. The consequences of this impact, that can seriously modify, positively or negatively, the project's future cash flows and therefore the investment decision, are illustrated by numerical examples.
We provide a distributional study of the solution to the classical control problem due to De Finetti (1957), Gerber (1969), Azcue and Muler (2005), and Avram et al. (2007), which concerns the optimal payment of dividends from an insurance risk process prior to ruin. Specifically, we build on recent work in the actuarial literature concerning calculations of the nth moment of the net present value of dividends paid out in the optimal strategy as well as the moments of the deficit at ruin and the Laplace transform of the red period. The calculations we present go much further than the existing literature, in that our calculations are valid for a general spectrally negative Lévy process as opposed to the classical Cramér–Lundberg process with exponentially distributed jumps. Moreover, the technique we use appeals principally to excursion theory rather than integro-differential equations and, for the case of the nth moment of the net present value of dividends, makes a new link with the distribution of integrated exponential subordinators.
For a Markov renewal process where the time parameter is discrete, we present a novel method for calculating the asymptotic variance. Our approach is based on the key renewal theorem and is applicable even when the state space of the Markov chain is countably infinite.
In this short paper, we show how fluctuation identities for Lévy processes with no positive jumps yield the distribution of the present value of dividends paid until ruin in a Lévy insurance risk model with a dividend barrier.
In this paper, we obtain a closed form for the covariance function of a general stationary regenerative process. It is used to derive exact asymptotics of the covariance function of stationary ON/OFF and workload processes, when ON and OFF periods are heavy-tailed and mutually dependent. The case of a G/G/1/0 queueing system with heavy-tailed arrival and/or service times is studied in detail.
In this paper we consider the problem of first-crossing from above for a partial sums process m+St, t ≥ 1, with the diagonal line when the random variables Xt, t ≥ 1, are independent but satisfying nonstationary laws. Specifically, the distributions of all the Xts belong to a common parametric family of arithmetic distributions, and this family of laws is assumed to be stable by convolution. The key result is that the first-crossing time distribution and the associated ballot-type formula rely on an underlying polynomial structure, called the generalized Abel-Gontcharoff structure. In practice, this property advantageously provides simple and efficient recursions for the numerical evaluation of the probabilities of interest. Several applications are then presented, for constant and variable parameters.
We introduce a new class of spatial-temporal point processes based on Voronoi tessellations. At each step of such a process, a point is chosen at random according to a distribution determined by the associated Voronoi cells. The point is then removed, and a new random point is added to the configuration. The dynamics are simple and intuitive and could be applied to modelling natural phenomena. We prove ergodicity of these processes under wide conditions.
We characterize the Lyapunov exponent and ergodicity of nonlinear stochastic recursion models, including nonlinear AR-GARCH models, in terms of an easily defined, uniformly ergodic process. Properties of this latter process, known as the collapsed process, also determine the existence of moments for the stochastic recursion when it is stationary. As a result, both the stability of a given model and the existence of its moments may be evaluated with relative ease. The method of proof involves piggybacking a Foster-Lyapunov drift condition on certain characteristic behavior of the collapsed process.
Computer analysis of biological sequences often detects deviations from a random model. In the usual model, sequence letters are chosen independently, according to some fixed distribution over the relevant alphabet. Real biological sequences often contain simple repeats, however, which can be broadly characterized as multiple contiguous copies (usually inexact) of a specific word. This paper quantifies inexact simple repeats as local sums in a Markov additive process (MAP). The maximum of the local sums has an asymptotic distribution with two parameters (λ and k), which are given by general MAP formulas. The general MAP formulas are usually computationally intractable, but an essential simplification in the case of repeats permits λ and k to be computed from matrices whose dimension equals the size of the relevant alphabet. The simplification applies to some MAPs where the summand distributions do not depend on consecutive pairs of Markov states as usual, but on pairs with a fixed time-lag larger than one.
The Palm version of a stationary random subset of a d-dimensional grid is contructed using the two-step change-of-origin and change-of-measure method. An elementary proof is given of the fact that the Palm version is characterized by point-stationarity (distributional invariance under bijective shifts of the origin from a point of the set to another point of the set).
We study the tail behavior of discounted aggregate claims in a continuous-time renewal model. For the case of Pareto-type claims, we establish a tail asymptotic formula, which holds uniformly in time.
Following a long-standing suggestion by Gilbert and Mosteller, we derive an explicit formula for the asymptotic winning rate in the full-information best-choice problem.
In this paper, we discuss the problem of the pricing of American-style options in the exponential Lévy security market model. This model is typically incomplete, and we derive the explicit bounds of the interval of no arbitrage prices and the related optimal stopping moments for American put options and American call options in both finite and infinite horizon time. We consider a large class of Lévy processes.
Multifractional Brownian motion is a Gaussian process which has changing scaling properties generated by varying the local Hölder exponent. We show that multifractional Brownian motion is very sensitive to changes in the selected Hölder exponent and has extreme changes in magnitude. We suggest an alternative stochastic process, called integrated fractional white noise, which retains the important local properties but avoids the undesirable oscillations in magnitude. We also show how the Hölder exponent can be estimated locally from discrete data in this model.
We consider a weighted random walk model defined as follows. An n-step random walk on the integers with distribution Pn is weighted by giving the path S=(S0,…,Sn) a probability proportional to where the function f is the so-called fitness function. In the case of power-type fitness, we prove the convergence of the renormalized path to a deterministic function with exponential speed. This function is a solution to a variational problem. In the case of the simple symmetric random walk, explicit computations are done. Our result relies on large deviations techniques and Varadhan's integral lemma. We then study an application of this model to mutation-selection dynamics on the integers where a random walk operates the mutation. This dynamics is the infinite-population limit of that of mutation-selection genetic algorithms. We prove that the population grows to ∞ and make explicit its growth speed. This is a toy model for modelling the effect of stronger selection at ∞ for genetic algorithms taking place in a noncompact space.
We consider the Voronoi tessellation based on a stationary Poisson process N in ℝd. We provide a complete and explicit description of the Palm distribution describing N as seen from a randomly chosen (typical) point on a k-face of the tessellation. In particular, we compute the joint distribution of the d−k+1 neighbours of the k-face containing the typical point. Using this result as well as a fundamental general relationship between Palm probabilities, we then derive some properties of the typical k-face and its neighbours. Generalizing recent results of Muche (2005), we finally provide the joint distribution of the typical edge (typical 1-face) and its neighbours.