To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider a class of weakly interacting particle systems of mean-field type. The interactions between the particles are encoded in a graph sequence, i.e. two particles are interacting if and only if they are connected in the underlying graph. We establish a law of large numbers for the empirical measure of the system that holds whenever the graph sequence is convergent to a graphon. The limit is the solution of a non-linear Fokker–Planck equation weighted by the (possibly random) graphon limit. In contrast with the existing literature, our analysis focuses on both deterministic and random graphons: no regularity assumptions are made on the graph limit and we are able to include general graph sequences such as exchangeable random graphs. Finally, we identify the sequences of graphs, both random and deterministic, for which the associated empirical measure converges to the classical McKean–Vlasov mean-field limit.
We derive conditions for recurrence and transience for time-inhomogeneous birth-and-death processes considered as random walks with positively biased drifts. We establish a general result, from which the earlier known particular results by Menshikov and Volkov [‘Urn-related random walk with drift $\rho x^\alpha /t^\beta $’, Electron. J. Probab.13 (2008), 944–960] follow.
We find sufficient conditions on explosion/non-explosion for continuous-state branching processes with competition in a Lévy random environment. In particular, we identify the necessary and sufficient conditions on explosion/non-explosion when the competition function is a power function and the Lévy measure of the associated branching mechanism is stable.
We consider an insurance company modelling its surplus process by a Brownian motion with drift. Our target is to maximise the expected exponential utility of discounted dividend payments, given that the dividend rates are bounded by some constant. The utility function destroys the linearity and the time-homogeneity of the problem considered. The value function depends not only on the surplus, but also on time. Numerical considerations suggest that the optimal strategy, if it exists, is of a barrier type with a nonlinear barrier. In the related article of Grandits et al. (Scand. Actuarial J.2, 2007), it has been observed that standard numerical methods break down in certain parameter cases, and no closed-form solution has been found. For these reasons, we offer a new method allowing one to estimate the distance from an arbitrary smooth-enough function to the value function. Applying this method, we investigate the goodness of the most obvious suboptimal strategies—payout on the maximal rate, and constant barrier strategies—by measuring the distance from their performance functions to the value function.
In this paper we consider the problem of averaging for a class of piecewise deterministic Markov processes (PDMPs) whose dynamic is constrained by the presence of a boundary. On reaching the boundary, the process is forced to jump away from it. We assume that this boundary is attractive for the process in question in the sense that its averaged flow is not tangent to it. Our averaging result relies strongly on the existence of densities for the process, allowing us to study the average number of crossings of a smooth hypersurface by an unconstrained PDMP and to deduce from this study averaging results for constrained PDMPs.
We establish new results on the strictly stationary solution to an iterated function system. When the driving sequence is stationary and ergodic, though not independent, the strictly stationary solution may admit no moment but we show an exponential control of the trajectories. We exploit these results to prove, under mild conditions, the consistency of the quasi-maximum likelihood estimator of GARCH(p,q) models with non-independent innovations.
Conjecture II.3.6 of Spohn in [47] and Lecture 7 of Jensen–Yau in [35] ask for a general derivation of universal fluctuations of hydrodynamic limits in large-scale stochastic interacting particle systems. However, the past few decades have witnessed only minimal progress according to [26]. In this paper, we develop a general method for deriving the so-called Boltzmann–Gibbs principle for a general family of nonintegrable and nonstationary interacting particle systems, thereby responding to Spohn and Jensen–Yau. Most importantly, our method depends mostly on local and dynamical, and thus more general/universal, features of the model. This contrasts with previous work [6, 8, 24, 34], all of which rely on global and nonuniversal assumptions on invariant measures or initial measures of the model. As a concrete application of the method, we derive the KPZ equation as a large-scale limit of the height functions for a family of nonstationary and nonintegrable exclusion processes with an environment-dependent asymmetry. This establishes a first result to Big Picture Question 1.6 in [54] for nonstationary and nonintegrable ‘speed-change’ models that have also been of interest beyond KPZ [18, 22, 23, 38].
For linear stochastic differential equations with bounded coefficients, we establish the robustness of nonuniform mean-square exponential dichotomy (NMS-ED) on $[t_{0},\,+\infty )$, $(-\infty,\,t_{0}]$ and the whole ${\Bbb R}$ separately, in the sense that such an NMS-ED persists under a sufficiently small linear perturbation. The result for the nonuniform mean-square exponential contraction is also discussed. Moreover, in the process of proving the existence of NMS-ED, we use the observation that the projections of the ‘exponential growing solutions’ and the ‘exponential decaying solutions’ on $[t_{0},\,+\infty )$, $(-\infty,\,t_{0}]$ and ${\Bbb R}$ are different but related. Thus, the relations of three types of projections on $[t_{0},\,+\infty )$, $(-\infty,\,t_{0}]$ and ${\Bbb R}$ are discussed.
We prove some estimates for the variations of transition probabilities of the (1+1)-affine process. From these estimates we deduce the strong Feller and the ergodic properties of the total variation distance of the process. The key strategy is the pathwise construction and analysis of several Markov couplings using strong solutions of stochastic equations.
We study a stochastic differential equation with an unbounded drift and general Hölder continuous noise of order $\lambda \in (0,1)$. The corresponding equation turns out to have a unique solution that, depending on a particular shape of the drift, either stays above some continuous function or has continuous upper and lower bounds. Under some mild assumptions on the noise, we prove that the solution has moments of all orders. In addition, we provide its connection to the solution of some Skorokhod reflection problem. As an illustration of our results and motivation for applications, we also suggest two stochastic volatility models which we regard as generalizations of the CIR and CEV processes. We complete the study by providing a numerical scheme for the solution.
We consider solutions of Lévy-driven stochastic differential equations of the form $\textrm{d} X_t=\sigma(X_{t-})\textrm{d} L_t$, $X_0=x$, where the function $\sigma$ is twice continuously differentiable and the driving Lévy process $L=(L_t)_{t\geq0}$ is either vector or matrix valued. While the almost sure short-time behavior of Lévy processes is well known and can be characterized in terms of the characteristic triplet, there is no complete characterization of the behavior of the solution X. Using methods from stochastic calculus, we derive limiting results for stochastic integrals of the form $t^{-p}\int_{0+}^t\sigma(X_{t-})\,\textrm{d} L_t$ to show that the behavior of the quantity $t^{-p}(X_t-X_0)$ for $t\downarrow0$ almost surely reflects the behavior of $t^{-p}L_t$. Generalizing $t^{{\kern1pt}p}$ to a suitable function $f\colon[0,\infty)\rightarrow\mathbb{R}$ then yields a tool to derive explicit law of the iterated logarithm type results for the solution from the behavior of the driving Lévy process.
We prove existence and uniqueness for the solution of a class of mixed fractional stochastic differential equations with discontinuous drift driven by both standard and fractional Brownian motion. Additionally, we establish a generalized Itô rule valid for functions with an absolutely continuous derivative and applicable to solutions of mixed fractional stochastic differential equations with Lipschitz coefficients, which plays a key role in our proof of existence and uniqueness. The proof of such a formula is new and relies on showing the existence of a density of the law under mild assumptions on the diffusion coefficient.
We study approximations for the Lévy area of Brownian motion which are based on the Fourier series expansion and a polynomial expansion of the associated Brownian bridge. Comparing the asymptotic convergence rates of the Lévy area approximations, we see that the approximation resulting from the polynomial expansion of the Brownian bridge is more accurate than the Kloeden–Platen–Wright approximation, whilst still only using independent normal random vectors. We then link the asymptotic convergence rates of these approximations to the limiting fluctuations for the corresponding series expansions of the Brownian bridge. Moreover, and of interest in its own right, the analysis we use to identify the fluctuation processes for the Karhunen–Loève and Fourier series expansions of the Brownian bridge is extended to give a stand-alone derivation of the values of the Riemann zeta function at even positive integers.
In this paper we study a class of optimal stopping problems under g-expectation, that is, the cost function is described by the solution of backward stochastic differential equations (BSDEs). Primarily, we assume that the reward process is $L\exp\bigl(\mu\sqrt{2\log\!(1+L)}\bigr)$-integrable with $\mu>\mu_0$ for some critical value $\mu_0$. This integrability is weaker than $L^p$-integrability for any $p>1$, so it covers a comparatively wide class of optimal stopping problems. To reach our goal, we introduce a class of reflected backward stochastic differential equations (RBSDEs) with $L\exp\bigl(\mu\sqrt{2\log\!(1+L)}\bigr)$-integrable parameters. We prove the existence, uniqueness, and comparison theorem for these RBSDEs under Lipschitz-type assumptions on the coefficients. This allows us to characterize the value function of our optimal stopping problem as the unique solution of such RBSDEs.
In this paper, we study the optimal multiple stopping problem under the filtration-consistent nonlinear expectations. The reward is given by a set of random variables satisfying some appropriate assumptions, rather than a process that is right-continuous with left limits. We first construct the optimal stopping time for the single stopping problem, which is no longer given by the first hitting time of processes. We then prove by induction that the value function of the multiple stopping problem can be interpreted as the one for the single stopping problem associated with a new reward family, which allows us to construct the optimal multiple stopping times. If the reward family satisfies some strong regularity conditions, we show that the reward family and the value functions can be aggregated by some progressive processes. Hence, the optimal stopping times can be represented as hitting times.
In the current work, we study a stochastic parabolic problem. The presented problem is motivated by the study of an idealised electrically actuated MEMS (Micro-Electro-Mechanical System) device in the case of random fluctuations of the potential difference, a parameter that actually controls the operation of MEMS device. We first present the construction of the mathematical model, and then, we deduce some local existence results. Next for some particular versions of the model, relevant to various boundary conditions, we derive quenching results as well as estimations of the probability for such singularity to occur. Additional numerical study of the problem in one dimension follows, which also allows the further investigation the problem with respect to its quenching behaviour.
We prove a rate of convergence for the N-particle approximation of a second-order partial differential equation in the space of probability measures, such as the master equation or Bellman equation of the mean-field control problem under common noise. The rate is of order $1/N$ for the pathwise error on the solution v and of order $1/\sqrt{N}$ for the $L^2$-error on its L-derivative $\partial_\mu v$. The proof relies on backward stochastic differential equation techniques.
A system of mutually interacting superprocesses with migration is constructed as the limit of a sequence of branching particle systems arising from population models. The uniqueness in law of the superprocesses is established using the pathwise uniqueness of a system of stochastic partial differential equations, which is satisfied by the corresponding system of distribution function-valued processes.