To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we study the optimal multiple stopping problem under the filtration-consistent nonlinear expectations. The reward is given by a set of random variables satisfying some appropriate assumptions, rather than a process that is right-continuous with left limits. We first construct the optimal stopping time for the single stopping problem, which is no longer given by the first hitting time of processes. We then prove by induction that the value function of the multiple stopping problem can be interpreted as the one for the single stopping problem associated with a new reward family, which allows us to construct the optimal multiple stopping times. If the reward family satisfies some strong regularity conditions, we show that the reward family and the value functions can be aggregated by some progressive processes. Hence, the optimal stopping times can be represented as hitting times.
In the current work, we study a stochastic parabolic problem. The presented problem is motivated by the study of an idealised electrically actuated MEMS (Micro-Electro-Mechanical System) device in the case of random fluctuations of the potential difference, a parameter that actually controls the operation of MEMS device. We first present the construction of the mathematical model, and then, we deduce some local existence results. Next for some particular versions of the model, relevant to various boundary conditions, we derive quenching results as well as estimations of the probability for such singularity to occur. Additional numerical study of the problem in one dimension follows, which also allows the further investigation the problem with respect to its quenching behaviour.
We prove a rate of convergence for the N-particle approximation of a second-order partial differential equation in the space of probability measures, such as the master equation or Bellman equation of the mean-field control problem under common noise. The rate is of order $1/N$ for the pathwise error on the solution v and of order $1/\sqrt{N}$ for the $L^2$-error on its L-derivative $\partial_\mu v$. The proof relies on backward stochastic differential equation techniques.
A system of mutually interacting superprocesses with migration is constructed as the limit of a sequence of branching particle systems arising from population models. The uniqueness in law of the superprocesses is established using the pathwise uniqueness of a system of stochastic partial differential equations, which is satisfied by the corresponding system of distribution function-valued processes.
Motivated by applications to wireless networks, cloud computing, data centers, etc., stochastic processing networks have been studied in the literature under various asymptotic regimes. In the heavy traffic regime, the steady-state mean queue length is proved to be $\Theta({1}/{\epsilon})$, where $\epsilon$ is the heavy traffic parameter (which goes to zero in the limit). The focus of this paper is on obtaining queue length bounds on pre-limit systems, thus establishing the rate of convergence to heavy traffic. For the generalized switch, operating under the MaxWeight algorithm, we show that the mean queue length is within $\textrm{O}({\log}({1}/{\epsilon}))$ of its heavy traffic limit. This result holds regardless of the complete resource pooling (CRP) condition being satisfied. Furthermore, when the CRP condition is satisfied, we show that the mean queue length under the MaxWeight algorithm is within $\textrm{O}({\log}({1}/{\epsilon}))$ of the optimal scheduling policy. Finally, we obtain similar results for the rate of convergence to heavy traffic of the total queue length in load balancing systems operating under the ‘join the shortest queue’ routeing algorithm.
In this paper we propose a general framework for modeling an insurance liability cash flow in continuous time, by generalizing the reduced-form framework for credit risk and life insurance. In particular, we assume a nontrivial dependence structure between the reference filtration and the insurance internal filtration. We apply these results for pricing and hedging non-life insurance liabilities in hybrid financial and insurance markets, while taking into account the role of inflation under the benchmarked risk-minimization approach. This framework offers at the same time a general and flexible structure, and an explicit and treatable pricing-hedging formula.
We study an intertemporal consumption and portfolio choice problem under Knightian uncertainty in which agent’s preferences exhibit local intertemporal substitution. We also allow for market frictions in the sense that the pricing functional is nonlinear. We prove existence and uniqueness of the optimal consumption plan, and we derive a set of sufficient first-order conditions for optimality. With the help of a backward equation, we are able to determine the structure of optimal consumption plans. We obtain explicit solutions in a stationary setting in which the financial market has different risk premia for short and long positions.
In this paper, we construct operator fractional Lévy motion (ofLm), a broad class of infinitely divisible stochastic processes that are covariance operator self-similar and have wide-sense stationary increments. The ofLm class generalizes the univariate fractional Lévy motion as well as the multivariate operator fractional Brownian motion (ofBm). OfLm can be divided into two types, namely, moving average (maofLm) and real harmonizable (rhofLm), both of which share the covariance structure of ofBm under assumptions. We show that maofLm and rhofLm admit stochastic integral representations in the time and Fourier domains, and establish their distinct small- and large-scale limiting behavior. We also characterize time-reversibility for ofLm through parametric conditions related to its Lévy measure. In particular, we show that, under non-Gaussianity, the parametric conditions for time-reversibility are generally more restrictive than those for the Gaussian case (ofBm).
We provide constructions of age-structured branching processes without or with immigration as pathwise-unique solutions to stochastic integral equations. A necessary and sufficient condition for the ergodicity of the model with immigration is also given.
This paper discusses a general class of replicator–mutator equations on a multidimensional fitness space. We establish a novel probabilistic representation of weak solutions of the equation by using the theory of Fokker–Planck–Kolmogorov (FPK) equations and a martingale extraction approach. We provide examples with closed-form probabilistic solutions for different fitness functions considered in the existing literature. We also construct a particle system and prove a general convergence result to the unique solution of the FPK equation associated with the extended replicator–mutator equation with respect to a Wasserstein-like metric adapted to our probabilistic framework.
In this paper we employ a Gaussian-type heat kernel estimate to establish Krylov’s estimate and Khasminskii’s estimate for the Euler–Maruyama (EM) algorithm. For applications, by taking Zvonkin’s transformation into account, we investigate the convergence rate of the EM algorithm for a class of multidimensional stochastic differential equations (SDEs) with low regular drifts, which need not be piecewise Lipschitz.
We obtain a generalisation of the Stroock–Varadhan support theorem for a large class of systems of subcritical singular stochastic partial differential equations driven by a noise that is either white or approximately self-similar. The main problem that we face is the presence of renormalisation. In particular, it may happen in general that different renormalisation procedures yield solutions with different supports. One of the main steps in our construction is the identification of a subgroup $\mathcal {H}$ of the renormalisation group such that any renormalisation procedure determines a unique coset $g\circ \mathcal {H}$. The support of the solution then depends only on this coset and is obtained by taking the closure of all solutions obtained by replacing the driving noises by smooth functions in the equation that is renormalised by some element of $g\circ \mathcal {H}$.
One immediate corollary of our results is that the $\Phi ^4_3$ measure in finite volume has full support, and the associated Langevin dynamic is exponentially ergodic.
In this paper an exact rejection algorithm for simulating paths of the coupled Wright–Fisher diffusion is introduced. The coupled Wright–Fisher diffusion is a family of multivariate Wright–Fisher diffusions that have drifts depending on each other through a coupling term and that find applications in the study of networks of interacting genes. The proposed rejection algorithm uses independent neutral Wright–Fisher diffusions as candidate proposals, which are only needed at a finite number of points. Once a candidate is accepted, the remainder of the path can be recovered by sampling from neutral multivariate Wright–Fisher bridges, for which an exact sampling strategy is also provided. Finally, the algorithm’s complexity is derived and its performance demonstrated in a simulation study.
Taking the consideration of two-dimensional stochastic Navier–Stokes equations with multiplicative Lévy noises, where the noises intensities are related to the viscosity, a large deviation principle is established by using the weak convergence method skillfully, when the viscosity converges to 0. Due to the appearance of the jumps, it is difficult to close the energy estimates and obtain the desired convergence. Hence, one cannot simply use the weak convergence approach. To overcome the difficulty, one introduces special norms for new arguments and more careful analysis.
Oscillatory systems of interacting Hawkes processes with Erlang memory kernels were introduced by Ditlevsen and Löcherbach (Stoch. Process. Appl., 2017). They are piecewise deterministic Markov processes (PDMP) and can be approximated by a stochastic diffusion. In this paper, first, a strong error bound between the PDMP and the diffusion is proved. Second, moment bounds for the resulting diffusion are derived. Third, approximation schemes for the diffusion, based on the numerical splitting approach, are proposed. These schemes are proved to converge with mean-square order 1 and to preserve the properties of the diffusion, in particular the hypoellipticity, the ergodicity, and the moment bounds. Finally, the PDMP and the diffusion are compared through numerical experiments, where the PDMP is simulated with an adapted thinning procedure.
There are two types of tempered stable (TS) based Ornstein–Uhlenbeck (OU) processes: (i) the OU-TS process, the OU process driven by a TS subordinator, and (ii) the TS-OU process, the OU process with TS marginal law. They have various applications in financial engineering and econometrics. In the literature, only the second type under the stationary assumption has an exact simulation algorithm. In this paper we develop a unified approach to exactly simulate both types without the stationary assumption. It is mainly based on the distributional decomposition of stochastic processes with the aid of an acceptance–rejection scheme. As the inverse Gaussian distribution is an important special case of TS distribution, we also provide tailored algorithms for the corresponding OU processes. Numerical experiments and tests are reported to demonstrate the accuracy and effectiveness of our algorithms, and some further extensions are also discussed.
Our aim is to find sufficient conditions for weak convergence of stochastic integrals with respect to the state occupation measure of a Markov chain. First, we study properties of the state indicator function and the state occupation measure of a Markov chain. In particular, we establish weak convergence of the state occupation measure under a scaling of the generator matrix. Then, relying on the connection between the state occupation measure and the Dynkin martingale, we provide sufficient conditions for weak convergence of stochastic integrals with respect to the state occupation measure. We apply our results to derive diffusion limits for the Markov-modulated Erlang loss model and the regime-switching Cox–Ingersoll–Ross process.
We propose a new multifractional stochastic process which allows for self-exciting behavior, similar to what can be seen for example in earthquakes and other self-organizing phenomena. The process can be seen as an extension of a multifractional Brownian motion, where the Hurst function is dependent on the past of the process. We define this by means of a stochastic Volterra equation, and we prove existence and uniqueness of this equation, as well as giving bounds on the p-order moments, for all $p\geq1$. We show convergence of an Euler–Maruyama scheme for the process, and also give the rate of convergence, which is dependent on the self-exciting dynamics of the process. Moreover, we discuss various applications of this process, and give examples of different functions to model self-exciting behavior.
We define a new family of multivariate stochastic processes over a finite time horizon that we call generalised Liouville processes (GLPs). GLPs are Markov processes constructed by splitting Lévy random bridges into non-overlapping subprocesses via time changes. We show that the terminal values and the increments of GLPs have generalised multivariate Liouville distributions, justifying their name. We provide various other properties of GLPs and some examples.