We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This work investigates analytically, the use of piezoelectric tiles placed on stairways for vibrational energy harvesting – harnessing electrical power from natural vibrational phenomena – from pedestrian footfalls. While energy harvesting from pedestrian traffic along flat pathways has been studied in the linear regime and realised in practical applications, the greater amounts of energy naturally expended in traversing stairways suggest better prospects for harvesting. Considering the characteristics of two types of commercially available piezoelectric tiles – Navy Type III and Navy Type V – analytical models for the coupled electromechanical system are formulated. The harvesting potential of the tiles is then studied under conditions of both deterministic and carefully developed random excitation profiles for three distinct cases: linear, monostable nonlinear and an array of monostable nonlinear tiles on adjacent steps with linear coupling between them. The results indicate enhanced power output when the tiles are: (1) placed on stairways, (2) uncoupled and (3) subjected to excitation profiles with stochastic frequency. In addition, the Navy Type V tiles are seen to outperform the Navy Type III tiles. Finally, the strongly nonlinear regime outperforms the linear one suggesting that the realisation of commercially available piezoelectric tiles with appropriately tailored nonlinear characteristics will likely have a significant impact on energy harvesting from pedestrian traffic.
Vibration energy harvesting aims to harness the energy of ambient random vibrations for power generation, particularly in small-scale devices. Typically, stochastic excitation driving the harvester is modelled as a Brownian process and the dynamics are studied in the equilibrium state. However, non-Brownian excitations are of interest, particularly in the nonequilibrium regime of the dynamics. In this work we study the nonequilibrium dynamics of a generic piezoelectric harvester driven by Brownian as well as (non-Brownian) Lévy flight excitation, both in the linear and the Duffing regimes. Both the monostable and the bistable cases of the Duffing regime are studied. The first set of results demonstrate that Lévy flight excitation results in higher expectation values of harvested power. In particular, it is shown that increasing the noise intensity leads to a significant increase in power output. It is also shown that a linearly coupled array of nonlinear harvesters yields improved power output for tailored values of coupling coefficients. The second set of results show that Lévy flight excitation fundamentally alters the bifurcation characteristics of the dynamics. Together, the results underscore the importance of non-Brownian excitation characterised by Lévy flight in vibration energy harvesting, both from a theoretical viewpoint and from the perspective of practical applications.
Estimates for sample paths of fast–slow stochastic ordinary differential equations have become a key mathematical tool relevant for theory and applications. In particular, there have been breakthroughs by Berglund and Gentz to prove sharp exponential error estimates. In this paper, we take the first steps in order to generalise this theory to fast–slow stochastic partial differential equations. In a simplified setting with a natural decomposition into low- and high-frequency modes, we demonstrate that for a short-time period the probability for the corresponding sample path to leave a neighbourhood around the stable slow manifold of the system is exponentially small as well.
The stochastic resonance phenomenon implies “positive” changing of a system behaviour when noise is added to the system. The phenomenon has found numerous applications in physics, neuroscience, biology, medicine, mechanics and other fields. The present paper concerns this phenomenon for parametrically excited stochastic systems, i.e. systems that feature deterministic input signals that affect their parameters, e.g. stiffness, damping or mass properties. Parametrically excited systems are now widely used for signal sensing, filtering and amplification, particularly in micro- and nanoscale applications. And noise and uncertainty can be essential for systems at this scale. Thus, these systems potentially can exhibit stochastic resonance. In the present paper, we use a “deterministic” approach to describe the stochastic resonance phenomenon that implies replacing noise by deterministic high-frequency excitations. By means of the approach, we show that stochastic resonance can occur for parametrically excited systems and determine the corresponding resonance conditions.
Metastable transitions in Langevin dynamics can exhibit rich behaviours that are markedly different from its overdamped limit. In addition to local alterations of the transition path geometry, more fundamental global changes may exist. For instance, when the dissipation is weak, heteroclinic connections that exist in the overdamped limit do not necessarily have a counterpart in the Langevin system, potentially leading to different transition rates. Furthermore, when the friction coefficient depends on the velocity, the overdamped limit no longer exists, but it is still possible to efficiently find instantons. The approach, we employed for these discoveries, was based on (i) a simple rewriting of the Freidlin–Wentzell action in terms of time-reversed dynamics and (ii) an adaptation of the string method, which was originally designed for gradient systems, to this specific non-gradient system.
Critical transitions (or tipping points) are drastic sudden changes observed in many dynamical systems. Large classes of critical transitions are associated with systems, which drift slowly towards a bifurcation point. In the context of stochastic ordinary differential equations, there are results on growth of variance and autocorrelation before a transition, which can be used as possible warning signs in applications. A similar theory has recently been developed in the simplest setting for stochastic partial differential equations (SPDEs) for self-adjoint operators in the drift term. This setting leads to real discrete spectrum and growth of the covariance operator via a certain scaling law. In this paper, we develop this theory substantially further. We cover the cases of complex eigenvalues, degenerate eigenvalues as well as continuous spectrum. This provides a fairly comprehensive theory for most practical applications of warning signs for SPDE bifurcations.
An approximate analytical solution is derived for a certain class of stochastic differential equations with constant diffusion, but nonlinear drift coefficients. Specifically, a closed form expression is derived for the response process transition probability density function (PDF) based on the concept of the Wiener path integral and on a Cauchy–Schwarz inequality treatment. This is done in conjunction with formulating and solving an error minimisation problem by relying on the associated Fokker–Planck equation operator. The developed technique, which requires minimal computational cost for the determination of the response process PDF, exhibits satisfactory accuracy and is capable of capturing the salient features of the PDF as demonstrated by comparisons with pertinent Monte Carlo simulation data. In addition to the mathematical merit of the approximate analytical solution, the derived PDF can be used also as a benchmark for assessing the accuracy of alternative, more computationally demanding, numerical solution techniques. Several examples are provided for assessing the reliability of the proposed approximation.
This study investigates the phenomenon of targeted energy transfer (TET) from a linear oscillator to a nonlinear attachment behaving as a nonlinear energy sink for both transient and stochastic excitations. First, the dynamics of the underlying Hamiltonian system under deterministic transient loading is studied. Assuming that the transient dynamics can be partitioned into slow and fast components, the governing equations of motion corresponding to the slow flow dynamics are derived and the behaviour of the system is analysed. Subsequently, the effect of noise on the slow flow dynamics of the system is investigated. The Itô stochastic differential equations for the noisy system are derived and the corresponding Fokker–Planck equations are numerically solved to gain insights into the behaviour of the system on TET. The effects of the system parameters as well as noise intensity on the optimal regime of TET are studied. The analysis reveals that the interaction of nonlinearities and noise enhances the optimal TET regime as predicted in deterministic analysis.
Results on the behaviour of a pendulum which is parametrically excited by large amplitude random loads at its pivot are presented, including a novel experimental case study. Thereby, it is dealt with a random excitation by a non-white Gaussian stochastic process with prescribed spectral density. Special focus is devoted to stochastic processes resulting from random sea wave elevation and the question whether random sea waves can lead to rotational motion of the parametrically excited pendulum. The motivation for such an experimental study is energy harvesting from ocean waves.
In this paper we consider the factor analysis for Lévy-driven multivariate price models with stochastic volatility. Our main aim is to provide conditions on the volatility process under which we can possibly reduce the dimension of the driving Lévy motion. We find that these conditions depend on a particular form of the multivariate Lévy process. In some settings we concentrate on nondegenerate symmetric α-stable Lévy motions.
An infinite convergent sum of independent and identically distributed random variables discounted by a multiplicative random walk is called perpetuity, because of a possible actuarial application. We provide three disjoint groups of sufficient conditions which ensure that the right tail of a perpetuity ℙ{X > x} is asymptotic to axce-bx as x → ∞ for some a, b > 0, and c ∈ ℝ. Our results complement those of Denisov and Zwart (2007). As an auxiliary tool we provide criteria for the finiteness of the one-sided exponential moments of perpetuities. We give several examples in which the distributions of perpetuities are explicitly identified.
In the paper we study the Zakai and Kushner–Stratonovich equations of the nonlinear filtering problem for a non-Gaussian signal-observation system. Moreover, we prove that under some general assumption, the Zakai equation has pathwise uniqueness and uniqueness in joint law, and the Kushner–Stratonovich equation is unique in joint law.
Let X be a jump-diffusion process and X* its running supremum. In this paper we first show that for any t > 0, the law of the pair (X*t, Xt) has a density with respect to the Lebesgue measure. This allows us to show that for any t > 0, the law of the pair formed by the random variable Xt and the running supremum X*t of X at time t can be characterized as a weak solution of a partial differential equation concerning the distribution of the pair (X*t, Xt). Then we obtain an expression of the marginal density of X*t for all t > 0.
We consider a finite-time optimal consumption problem where an investor wants to maximize the expected hyperbolic absolute risk aversion utility of consumption and terminal wealth. We treat a stochastic factor model in which the mean returns of risky assets depend linearly on underlying economic factors formulated as the solutions of linear stochastic differential equations. We discuss the partial information case in which the investor cannot observe the factor process and uses only past information of risky assets. Then our problem is formulated as a stochastic control problem with partial information. We derive the Hamilton–Jacobi–Bellman equation. We solve this equation to obtain an explicit form of the value function and the optimal strategy for this problem. Moreover, we also introduce the results obtained by the martingale method.
In this paper we use the method of conjugate duality to investigate a class of stochastic optimal control problems where state systems are described by stochastic differential equations with delay. For this, we first analyse a stochastic convex problem with delay and derive the expression for the corresponding dual problem. This enables us to obtain the relationship between the optimalities for the two problems. Then, by linking stochastic optimal control problems with delay with a particular type of stochastic convex problem, the result for the latter leads to sufficient maximum principles for the former.
This paper is devoted to numerical methods for mean-field stochastic differential equations (MSDEs). We first develop the mean-field Itô formula and mean-field Itô-Taylor expansion. Then based on the new formula and expansion, we propose the Itô-Taylor schemes of strong order γ and weak order η for MSDEs, and theoretically obtain the convergence rate γ of the strong Itô-Taylor scheme, which can be seen as an extension of the well-known fundamental strong convergence theorem to the mean-field SDE setting. Finally some numerical examples are given to verify our theoretical results.
We extend Goldie's implicit renewal theorem to the arithmetic case, which allows us to determine the tail behavior of the solution of various random fixed point equations. It turns out that the arithmetic and nonarithmetic cases are very different. Under appropriate conditions we obtain that the tail of the solution X of the fixed point equations X =DAX + B and X =DAX ∨ B is ℓ(x) q(x) x-κ, where q is a logarithmically periodic function q(x eh) = q(x), x > 0, with h being the span of the arithmetic distribution of log A, and ℓ is a slowly varying function. In particular, the tail is not necessarily regularly varying. We use the renewal theoretic approach developed by Grincevičius (1975) and Goldie (1991).
We consider a general class of epidemic models obtained by applying the random time changes of Ethier and Kurtz (2005) to a collection of Poisson processes and we show the large deviation principle for such models. We generalise the approach followed by Dolgoarshinnykh (2009) in the case of the SIR epidemic model. Thanks to an additional assumption which is satisfied in many examples, we simplify the recent work of Kratz and Pardoux (2017).
In error estimates of various numerical approaches for solving decoupled forward backward stochastic differential equations (FBSDEs), the rate of convergence for one variable is usually less than for the other. Under slightly strengthened smoothness assumptions, we show that the fully discrete Euler scheme admits a first-order rate of convergence for both variables.
In this paper we prove a short time asymptotic expansion of a hypoelliptic heat kernel on a Euclidean space and a compact manifold. We study the ‘cut locus’ case, namely, the case where energy-minimizing paths which join the two points under consideration form not a finite set, but a compact manifold. Under mild assumptions we obtain an asymptotic expansion of the heat kernel up to any order. Our approach is probabilistic and the heat kernel is regarded as the density of the law of a hypoelliptic diffusion process, which is realized as a unique solution of the corresponding stochastic differential equation. Our main tools are S. Watanabe’s distributional Malliavin calculus and T. Lyons’ rough path theory.