We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove a Poisson process approximation result for stabilising functionals of a determinantal point process. Our results use concrete couplings of determinantal processes with different Palm measures and exploit their association properties. Second, we focus on the Ginibre process and show in the asymptotic scenario of an increasing observation window that the process of points with a large nearest neighbour distance converges after a suitable scaling to a Poisson point process. As a corollary, we obtain the scaling of the maximum nearest neighbour distance in the Ginibre process, which turns out to be different from its analogue for independent points.
We analyze generating functions for trees and for connected subgraphs on the complete graph, and identify a single scaling profile which applies for both generating functions in a critical window. Our motivation comes from the analysis of the finite-size scaling of lattice trees and lattice animals on a high-dimensional discrete torus, for which we conjecture that the identical profile applies in dimensions $d \ge 8$.
We define a random graph obtained by connecting each point of $\mathbb{Z}^d$ independently and uniformly to a fixed number $1 \leq k \leq 2d$ of its nearest neighbors via a directed edge. We call this graph the directed k-neighbor graph. Two natural associated undirected graphs are the undirected and the bidirectional k-neighbor graph, where we connect two vertices by an undirected edge whenever there is a directed edge in the directed k-neighbor graph between the vertices in at least one, respectively precisely two, directions. For these graphs we study the question of percolation, i.e. the existence of an infinite self-avoiding path. Using different kinds of proof techniques for different classes of cases, we show that for $k=1$ even the undirected k-neighbor graph never percolates, while the directed k-neighbor graph percolates whenever $k \geq d+1$, $k \geq 3$, and $d \geq 5$, or $k \geq 4$ and $d=4$. We also show that the undirected 2-neighbor graph percolates for $d=2$, the undirected 3-neighbor graph percolates for $d=3$, and we provide some positive and negative percolation results regarding the bidirectional graph as well. A heuristic argument for high dimensions indicates that this class of models is a natural discrete analogue of the k-nearest-neighbor graphs studied in continuum percolation, and our results support this interpretation.
We consider a single server queue that has a threshold to change its arrival process and service speed by its queue length, which is referred to as a two-level GI/G/1 queue. This model is motivated by an energy saving problem for a single server queue whose arrival process and service speed are controlled. To obtain its performance in tractable form, we study the limit of the stationary distribution of the queue length in this two-level queue under scaling in heavy traffic. Except for a special case, this limit corresponds to its diffusion approximation. It is shown that this limiting distribution is truncated exponential (or uniform if the drift is null) below the threshold level and exponential above it under suitably chosen system parameters and generally distributed interarrival times and workloads brought by customers. This result is proved under a mild limitation on arrival parameters using the so-called basic adjoint relationship (BAR) approach studied in Braverman, Dai, and Miyazawa (2017, 2024) and Miyazawa (2017, 2024). We also intuitively discuss about a diffusion process corresponding to the limit of the stationary distribution under scaling.
The Wright–Fisher model, originating in Wright (1931) is one of the canonical probabilistic models used in mathematical population genetics to study how genetic type frequencies evolve in time. In this paper we bound the rate of convergence of the stationary distribution for a finite population Wright–Fisher Markov chain with parent-independent mutation to the Dirichlet distribution. Our result improves the rate of convergence established in Gan et al. (2017) from $\mathrm{O}(1/\sqrt{N})$ to $\mathrm{O}(1/N)$. The results are derived using Stein’s method, in particular, the prelimit generator comparison method.
In their celebrated paper [CLR10], Caputo, Liggett and Richthammer proved Aldous’ conjecture and showed that for an arbitrary finite graph, the spectral gap of the interchange process is equal to the spectral gap of the underlying random walk. A crucial ingredient in the proof was the Octopus Inequality — a certain inequality of operators in the group ring $\mathbb{R}\left[{\mathrm{Sym}}_{n}\right]$ of the symmetric group. Here we generalise the Octopus Inequality and apply it to generalising the Caputo–Liggett–Richthammer Theorem to certain hypergraphs, proving some cases of a conjecture of Caputo.
We focus on obtaining Block–Savits type characterizations for different ageing classes as well as some important renewal classes by using the Laplace transform. We also introduce a novel approach, based on the equilibrium distribution, to handle situations where the techniques of Block and Savits (1980) either fail or involve tedious calculations. Our approach in conjunction with the theory of total positivity yields Vinogradov’s (1973) result for the increasing failure rate class when the distribution function is continuous. We also present simple but elegant proofs for Block and Savits’ results for the decreasing mean residual life, new better than used in expectation, and harmonic new better than used in expectation classes as applications of our approach. We address several other related issues that are germane to our problem. Finally, we conclude with a short discussion on the issue of convolutions.
Conditional risk measures and their associated risk contribution measures are commonly employed in finance and actuarial science for evaluating systemic risk and quantifying the effects of risk interactions. This paper introduces various types of contribution ratio measures based on the multivariate conditional value-at-risk (MCoVaR), multivariate conditional expected shortfall (MCoES), and multivariate marginal mean excess (MMME) studied in [34] (Ortega-Jiménez, P., Sordo, M., & Suárez-Llorens, A. (2021). Stochastic orders and multivariate measures of risk contagion. Insurance: Mathematics and Economics, vol. 96, 199–207) and [11] (Das, B., & Fasen-Hartmann, V. (2018). Risk contagion under regular variation and asymptotic tail independence. Journal of Multivariate Analysis165(1), 194–215) to assess the relative effects of a single risk when other risks in a group are in distress. The properties of these contribution risk measures are examined, and sufficient conditions for comparing these measures between two sets of random vectors are established using univariate and multivariate stochastic orders and statistically dependent notions. Numerical examples are presented to validate these conditions. Finally, a real dataset from the cryptocurrency market is used to analyze the spillover effects through our proposed contribution measures.
This paper defines and studies a broad class of shock models by assuming that a Markovian arrival process models the arrival pattern of shocks. Under the defined class, we show that the system’s lifetime follows the well-known phase-type distribution. Further, we examine the age replacement policy for systems with a continuous phase-type distribution, identifying sufficient conditions for determining the optimal replacement time. Since phase-type distributions are dense in the class of lifetime distributions, our findings for the age replacement policy are widely applicable. We include numerical examples and graphical illustrations to support our results.
We consider the hard-core model on a finite square grid graph with stochastic Glauber dynamics parametrized by the inverse temperature $\beta$. We investigate how the transition between its two maximum-occupancy configurations takes place in the low-temperature regime $\beta \to \infty$ in the case of periodic boundary conditions. The hard-core constraints and the grid symmetry make the structure of the critical configurations for this transition, also known as essential saddles, very rich and complex. We provide a comprehensive geometrical characterization of these configurations that together constitute a bottleneck for the Glauber dynamics in the low-temperature limit. In particular, we develop a novel isoperimetric inequality for hard-core configurations with a fixed number of particles and show how the essential saddles are characterized not only by the number of particles but also their geometry.
We consider interacting urns on a finite directed network, where both sampling and reinforcement processes depend on the nodes of the network. This extends previous research by incorporating node-dependent sampling and reinforcement. We classify the sampling and reinforcement schemes, as well as the networks on which the proportion of balls of either colour in each urn converges almost surely to a deterministic limit. We also investigate conditions for achieving synchronisation of the colour proportions across the urns and analyse fluctuations under specific conditions on the reinforcement scheme and network structure.
We introduce and study a game-theoretic model to understand the spread of an epidemic in a homogeneous population. A discrete-time stochastic process is considered where, in each epoch, first, a randomly chosen agent updates their action trying to maximize a proposed utility function, and then agents who have viral exposures beyond their immunity get infected. Our main results discuss asymptotic limiting distributions of both the cardinality of the subset of infected agents and the action profile, considered under various values of two parameters (initial action and immunity profile). We also show that the theoretical distributions are almost always achieved in the first few epochs.
The problem of reservation in a large distributed system is analyzed via a new mathematical model. The target application is car-sharing systems. This model is motivated by the large station-based car-sharing system in France called Autolib’. This system can be described as a closed stochastic network where the nodes are the stations and the customers are the cars. The user can reserve a car and a parking space. We study the evolution of the system when the reservation of parking spaces and cars is effective for all users. The asymptotic behavior of the underlying stochastic network is given when the number N of stations and the fleet size M increase at the same rate. The analysis involves a Markov process on a state space with dimension of order $N^2$. It is quite remarkable that the state process describing the evolution of the stations, whose dimension is of order N, converges in distribution, although not Markov, to a non-homogeneous Markov process. We prove this mean-field convergence. We also prove, using combinatorial arguments, that the mean-field limit has a unique equilibrium measure when the time between reserving and picking up the car is sufficiently small. This result extends the case where only the parking space can be reserved.
In this paper, we analyze a polling system on a circle. Random batches of customers arrive at a circle, where each customer, independently, obtains a location that is uniformly distributed on the circle. A single server cyclically traverses the circle to serve all customers. Using mean value analysis, we derive the expected number of waiting customers within a given distance of the server. We exploit this to obtain closed-form expressions for both the mean batch sojourn time and the mean time to delivery.
This paper obtains logarithmic asymptotics of moderate deviations of the stochastic process of the number of customers in a many-server queue with generally distributed inter-arrival and service times under a heavy-traffic scaling akin to the Halfin–Whitt regime. The deviation function is expressed in terms of the solution to a Fredholm equation of the second kind. A key element of the proof is the large-deviation principle in the scaling of moderate deviations for the sequential empirical process. The techniques of large-deviation convergence and idempotent processes are used extensively.
The box-ball systems are integrable cellular automata whose long-time behavior is characterized by soliton solutions, with rich connections to other integrable systems such as the Korteweg-de Vries equation. In this paper, we consider a multicolor box-ball system with two types of random initial configurations and obtain sharp scaling limits of the soliton lengths as the system size tends to infinity. We obtain a sharp scaling limit of soliton lengths that turns out to be more delicate than that in the single color case established in [LLP20]. A large part of our analysis is devoted to studying the associated carrier process, which is a multidimensional Markov chain on the orthant, whose excursions and running maxima are closely related to soliton lengths. We establish the sharp scaling of its ruin probabilities, Skorokhod decomposition, strong law of large numbers and weak diffusive scaling limit to a semimartingale reflecting Brownian motion with explicit parameters. We also establish and utilize complementary descriptions of the soliton lengths and numbers in terms of modified Greene-Kleitman invariants for the box-ball systems and associated circular exclusion processes.
The distribution theory for discrete-time renewal–reward processes with dependent rewards is developed through the derivation of double transforms. By dependent, we mean the more realistic setting in which the reward for an interarrival period is dependent on the duration of the associated interarrival time. The double transforms are the generating functions in time of the time-dependent reward probability-generating functions. Residue and saddlepoint approximations are used to invert such double transforms so that the reward distribution at arbitrary time n can be accurately approximated. In addition, double transforms are developed for the first-passage time distribution that the cumulative reward exceeds a fixed threshold amount. These distributions are accurately approximated by inverting the double transforms using residue and saddlepoint approximation methods. The residue methods also provide asymptotic expansions for moments and allow for the proof of central limit theorems related to these first passage times and reward amounts.
We consider the constrained-degree percolation model in a random environment (CDPRE) on the square lattice. In this model, each vertex v has an independent random constraint $\kappa_v$ which takes the value $j\in \{0,1,2,3\}$ with probability $\rho_j$. The dynamics is as follows: at time $t=0$ all edges are closed; each edge e attempts to open at a random time $U(e)\sim \mathrm{U}(0,1]$, independently of all the other edges. It succeeds if at time U(e) both its end vertices have degrees strictly smaller than their respective constraints. We obtain exponential decay of the radius of the open cluster of the origin at all times when its expected size is finite. Since CDPRE is dominated by Bernoulli percolation, this result is meaningful only if the supremum of all values of t for which the expected size of the open cluster of the origin is finite is larger than $\frac12$. We prove this last fact by showing a sharp phase transition for an intermediate model.
Consider a branching random walk on the real line with a random environment in time (BRWRE). A necessary and sufficient condition for the non-triviality of the limit of the derivative martingale is formulated. To this end, we investigate the random walk in a time-inhomogeneous random environment (RWRE), which is related to the BRWRE by the many-to-one formula. The key step is to figure out Tanaka’s decomposition for the RWRE conditioned to stay non-negative (or above a line), which is interesting in itself.
We analyze the process M(t) representing the maximum of the one-dimensional telegraph process X(t) with exponentially distributed upward random times and generally distributed downward random times. The evolution of M(t) is governed by an alternating renewal of two phases: a rising phase R and a constant phase C. During a rising phase, X(t) moves upward, whereas, during a constant phase, it moves upward and downward, continuing to move until it attains the maximal level previously reached. Under some choices of the distribution of the downward times, we are able to determine the distribution of C, which allows us to obtain some bounds for the survival function of M(t). In the particular case of exponential downward random times, we derive an explicit expression for the survival function of M(t). Finally, the moments of the first passage time $\Theta_w$ of the process X(t) through a fixed boundary $w>0$ are analyzed.