To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that for a discrete determinantal process the BK inequality occurs for increasing events generated by simple points. We also give some elementary but nonetheless appealing relationships between a discrete determinantal process and the well-known CS decomposition.
We derive three critical exponents for Bernoulli site percolation on the uniform infinite planar triangulation (UIPT). First, we compute explicitly the probability that the root cluster is infinite. As a consequence, we show that the off-critical exponent for site percolation on the UIPT is $\beta = 1/2$. Then we establish an integral formula for the generating function of the number of vertices in the root cluster. We use this formula to prove that, at criticality, the probability that the root cluster has at least n vertices decays like $n^{-1/7}$. Finally, we also derive an expression for the law of the perimeter of the root cluster and use it to establish that, at criticality, the probability that the perimeter of the root cluster is equal to n decays like $n^{-4/3}$. Among these three exponents, only the last one was previously known. Our main tools are the so-called gasket decomposition of percolation clusters, generic properties of random Boltzmann maps, and analytic combinatorics.
Scale-free percolation is a stochastic model for complex networks. In this spatial random graph model, vertices $x,y\in\mathbb{Z}^d$ are linked by an edge with probability depending on independent and identically distributed vertex weights and the Euclidean distance $|x-y|$. Depending on the various parameters involved, we get a rich phase diagram. We study graph distance and compare it to the Euclidean distance of the vertices. Our main attention is on a regime where graph distances are (poly-)logarithmic in the Euclidean distance. We obtain improved bounds on the logarithmic exponents. In the light tail regime, the correct exponent is identified.
We consider an (R, Q) inventory model with two types of orders, normal orders and emergency orders, which are issued at different inventory levels. These orders are delivered after exponentially distributed lead times. In between deliveries, the inventory level decreases in a state-dependent way, according to a release rate function $\alpha({\cdot})$. This function represents the fluid demand rate; it could be controlled by a system manager via price adaptations. We determine the mean number of downcrossings $\theta(x)$ of any level x in one regenerative cycle, and use it to obtain the steady-state density f (x) of the inventory level. We also derive the rates of occurrence of normal deliveries and of emergency deliveries, and the steady-state probability of having zero inventory.
We use probabilistic methods to study properties of mean-field models, which arise as large-scale limits of certain particle systems with mean-field interaction. The underlying particle system is such that n particles move forward on the real line. Specifically, each particle ‘jumps forward’ at some time points, with the instantaneous rate of jumps given by a decreasing function of the particle’s location quantile within the overall distribution of particle locations. A mean-field model describes the evolution of the particles’ distribution when n is large. It is essentially a solution to an integro-differential equation within a certain class. Our main results concern the existence and uniqueness of—and attraction to—mean-field models which are traveling waves, under general conditions on the jump-rate function and the jump-size distribution.
We introduce a general two-colour interacting urn model on a finite directed graph, where each urn at a node reinforces all the urns in its out-neighbours according to a fixed, non-negative, and balanced reinforcement matrix. We show that the fraction of balls of either colour converges almost surely to a deterministic limit if either the reinforcement is not of Pólya type or the graph is such that every vertex with non-zero in-degree can be reached from some vertex with zero in-degree. We also obtain joint central limit theorems with appropriate scalings. Furthermore, in the remaining case when there are no vertices with zero in-degree and the reinforcement is of Pólya type, we restrict our analysis to a regular graph and show that the fraction of balls of either colour converges almost surely to a finite random limit, which is the same across all the urns.
Let f be the density function associated to a matrix-exponential distribution of parameters $(\boldsymbol{\alpha}, T,\boldsymbol{{s}})$. By exponentially tilting f, we find a probabilistic interpretation which generalizes the one associated to phase-type distributions. More specifically, we show that for any sufficiently large $\lambda\ge 0$, the function $x\mapsto \left(\int_0^\infty e^{-\lambda s}f(s)\textrm{d} s\right)^{-1}e^{-\lambda x}f(x)$ can be described in terms of a finite-state Markov jump process whose generator is tied to T. Finally, we show how to revert the exponential tilting in order to assign a probabilistic interpretation to f itself.
We present a study of the joint distribution of both the state of a level-dependent quasi-birth–death (QBD) process and its associated running maximum level, at a fixed time t: more specifically, we derive expressions for the Laplace transforms of transition functions that contain this information, and the expressions we derive contain familiar constructs from the classical theory of QBD processes. Indeed, one important takeaway from our results is that the distribution of the running maximum level of a level-dependent QBD process can be studied using results that are highly analogous to the more well-established theory of level-dependent QBD processes that focuses primarily on the joint distribution of the level and phase. We also explain how our methods naturally extend to the study of level-dependent Markov processes of M/G/1 type, if we instead keep track of the running minimum level instead of the running maximum level.
Let $(\xi_k,\eta_k)_{k\in\mathbb{N}}$ be independent identically distributed random vectors with arbitrarily dependent positive components. We call a (globally) perturbed random walk a random sequence $T\,{:\!=}\, (T_k)_{k\in\mathbb{N}}$ defined by $T_k\,{:\!=}\, \xi_1+\cdots+\xi_{k-1}+\eta_k$ for $k\in\mathbb{N}$. Consider a general branching process generated by T and let $N_j(t)$ denote the number of the jth generation individuals with birth times $\leq t$. We treat early generations, that is, fixed generations j which do not depend on t. In this setting we prove counterparts for $\mathbb{E}N_j$ of the Blackwell theorem and the key renewal theorem, prove a strong law of large numbers for $N_j$, and find the first-order asymptotics for the variance of $N_j$. Also, we prove a functional limit theorem for the vector-valued process $(N_1(ut),\ldots, N_j(ut))_{u\geq0}$, properly normalized and centered, as $t\to\infty$. The limit is a vector-valued Gaussian process whose components are integrated Brownian motions.
This paper is concerned with the optimal number of redundant allocation to n-component coherent systems consisting of heterogeneous dependent components. We assume that the system is built up of L groups of different components, $L\geq 1$, where there are $n_i$ components in group i, and $\sum_{i=1}^{L}n_i=n$. The problem of interest is to allocate $v_i$ active redundant components to each component of type i, $i=1,\dots, L$. To get the optimal values of $v_i$ we propose two cost-based criteria. One of them is introduced based on the costs of renewing the failed components and the costs of refreshing the alive ones at the system failure time. The other criterion is proposed based on the costs of replacing the system at its failure time or at a predetermined time $\tau$, whichever occurs first. The expressions for the proposed functions are derived using the mixture representation of the system reliability function based on the notion of survival signature. We assume that a given copula function models the dependency structure between the components. In the particular case that the system is a series-parallel structure, we provide the formulas for the proposed cost-based functions. The results are discussed numerically for some specific coherent systems.
We investigate expansions for connectedness functions in the random connection model of continuum percolation in powers of the intensity. Precisely, we study the pair-connectedness and the direct-connectedness functions, related to each other via the Ornstein–Zernike equation. We exhibit the fact that the coefficients of the expansions consist of sums over connected and 2-connected graphs. In the physics literature, this is known to be the case more generally for percolation models based on Gibbs point processes and stands in analogy to the formalism developed for correlation functions in liquid-state statistical mechanics.
We find a representation of the direct-connectedness function and bounds on the intensity which allow us to pass to the thermodynamic limit. In some cases (e.g., in high dimensions), the results are valid in almost the entire subcritical regime. Moreover, we relate these expansions to the physics literature and we show how they coincide with the expression provided by the lace expansion.
In this paper we revisit some classical queueing systems such as the M$^b$/E$_k$/1/m and E$_k$/M$^b$/1/m queues, for which fast numerical and recursive methods exist to study their main performance measures. We present simple explicit results for the loss probability and queue length distribution of these queueing systems as well as for some related queues such as the M$^b$/D/1/m queue, the D/M$^b$/1/m queue, and fluid versions thereof. In order to establish these results we first present a simple analytical solution for the invariant measure of the M/E$_k$/1 queue that appears to be new.
We show that load-sharing models (a very special class of multivariate probability models for nonnegative random variables) can be used to obtain basic results about a multivariate extension of stochastic precedence and related paradoxes. Such results can be applied in several different fields. In particular, applications of them can be developed in the context of paradoxes which arise in voting theory. Also, an application to the notion of probability signature may be of interest, in the field of systems reliability.
The rich-get-richer rule reinforces actions that have been frequently chosen in the past. What happens to the evolution of individuals’ inclinations to choose an action when agents interact? Interaction tends to homogenize, while each individual dynamics tends to reinforce its own position. Interacting stochastic systems of reinforced processes have recently been considered in many papers, in which the asymptotic behavior is proven to exhibit almost sure synchronization. In this paper we consider models where, even if interaction among agents is present, absence of synchronization may happen because of the choice of an individual nonlinear reinforcement. We show how these systems can naturally be considered as models for coordination games or technological or opinion dynamics.
We prove a rate of convergence for the N-particle approximation of a second-order partial differential equation in the space of probability measures, such as the master equation or Bellman equation of the mean-field control problem under common noise. The rate is of order $1/N$ for the pathwise error on the solution v and of order $1/\sqrt{N}$ for the $L^2$-error on its L-derivative $\partial_\mu v$. The proof relies on backward stochastic differential equation techniques.
A system of mutually interacting superprocesses with migration is constructed as the limit of a sequence of branching particle systems arising from population models. The uniqueness in law of the superprocesses is established using the pathwise uniqueness of a system of stochastic partial differential equations, which is satisfied by the corresponding system of distribution function-valued processes.
Consider a finite or infinite collection of urns, each with capacity r, and balls randomly distributed among them. An overflow is the number of balls that are assigned to urns that already contain r balls. When $r=1$, this is the number of balls landing in non-empty urns, which has been studied in the past. Our aim here is to use martingale methods to study the asymptotics of the overflow in the general situation, i.e. for arbitrary r. In particular, we provide sufficient conditions for both Poissonian and normal asymptotics.
This article examines large-time behaviour of finite-state mean-field interacting particle systems. Our first main result is a sharp estimate (in the exponential scale) of the time required for convergence of the empirical measure process of the N-particle system to its invariant measure; we show that when time is of the order $\exp\{N\Lambda\}$ for a suitable constant $\Lambda > 0$, the process has mixed well and it is close to its invariant measure. We then obtain large-N asymptotics of the second-largest eigenvalue of the generator associated with the empirical measure process when it is reversible with respect to its invariant measure. We show that its absolute value scales as $\exp\{{-}N\Lambda\}$. The main tools used in establishing our results are the large deviation properties of the empirical measure process from its large-N limit. As an application of the study of large-time behaviour, we also show convergence of the empirical measure of the system of particles to a global minimum of a certain ‘entropy’ function when particles are added over time in a controlled fashion. The controlled addition of particles is analogous to the cooling schedule associated with the search for a global minimum of a function using the simulated annealing algorithm.
We study the so-called frog model on ${\mathbb{Z}}$ with two types of lazy frogs, with parameters $p_1,p_2\in (0,1]$ respectively, and a finite expected number of dormant frogs per site. We show that for any such $p_1$ and $p_2$ there is positive probability that the two types coexist (i.e. that both types activate infinitely many frogs). This answers a question of Deijfen, Hirscher, and Lopes in dimension one.
Motivated by applications to wireless networks, cloud computing, data centers, etc., stochastic processing networks have been studied in the literature under various asymptotic regimes. In the heavy traffic regime, the steady-state mean queue length is proved to be $\Theta({1}/{\epsilon})$, where $\epsilon$ is the heavy traffic parameter (which goes to zero in the limit). The focus of this paper is on obtaining queue length bounds on pre-limit systems, thus establishing the rate of convergence to heavy traffic. For the generalized switch, operating under the MaxWeight algorithm, we show that the mean queue length is within $\textrm{O}({\log}({1}/{\epsilon}))$ of its heavy traffic limit. This result holds regardless of the complete resource pooling (CRP) condition being satisfied. Furthermore, when the CRP condition is satisfied, we show that the mean queue length under the MaxWeight algorithm is within $\textrm{O}({\log}({1}/{\epsilon}))$ of the optimal scheduling policy. Finally, we obtain similar results for the rate of convergence to heavy traffic of the total queue length in load balancing systems operating under the ‘join the shortest queue’ routeing algorithm.