We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce a general two-colour interacting urn model on a finite directed graph, where each urn at a node reinforces all the urns in its out-neighbours according to a fixed, non-negative, and balanced reinforcement matrix. We show that the fraction of balls of either colour converges almost surely to a deterministic limit if either the reinforcement is not of Pólya type or the graph is such that every vertex with non-zero in-degree can be reached from some vertex with zero in-degree. We also obtain joint central limit theorems with appropriate scalings. Furthermore, in the remaining case when there are no vertices with zero in-degree and the reinforcement is of Pólya type, we restrict our analysis to a regular graph and show that the fraction of balls of either colour converges almost surely to a finite random limit, which is the same across all the urns.
Let f be the density function associated to a matrix-exponential distribution of parameters
$(\boldsymbol{\alpha}, T,\boldsymbol{{s}})$
. By exponentially tilting f, we find a probabilistic interpretation which generalizes the one associated to phase-type distributions. More specifically, we show that for any sufficiently large
$\lambda\ge 0$
, the function
$x\mapsto \left(\int_0^\infty e^{-\lambda s}f(s)\textrm{d} s\right)^{-1}e^{-\lambda x}f(x)$
can be described in terms of a finite-state Markov jump process whose generator is tied to T. Finally, we show how to revert the exponential tilting in order to assign a probabilistic interpretation to f itself.
We present a study of the joint distribution of both the state of a level-dependent quasi-birth–death (QBD) process and its associated running maximum level, at a fixed time t: more specifically, we derive expressions for the Laplace transforms of transition functions that contain this information, and the expressions we derive contain familiar constructs from the classical theory of QBD processes. Indeed, one important takeaway from our results is that the distribution of the running maximum level of a level-dependent QBD process can be studied using results that are highly analogous to the more well-established theory of level-dependent QBD processes that focuses primarily on the joint distribution of the level and phase. We also explain how our methods naturally extend to the study of level-dependent Markov processes of M/G/1 type, if we instead keep track of the running minimum level instead of the running maximum level.
Let
$(\xi_k,\eta_k)_{k\in\mathbb{N}}$
be independent identically distributed random vectors with arbitrarily dependent positive components. We call a (globally) perturbed random walk a random sequence
$T\,{:\!=}\, (T_k)_{k\in\mathbb{N}}$
defined by
$T_k\,{:\!=}\, \xi_1+\cdots+\xi_{k-1}+\eta_k$
for
$k\in\mathbb{N}$
. Consider a general branching process generated by T and let
$N_j(t)$
denote the number of the jth generation individuals with birth times
$\leq t$
. We treat early generations, that is, fixed generations j which do not depend on t. In this setting we prove counterparts for
$\mathbb{E}N_j$
of the Blackwell theorem and the key renewal theorem, prove a strong law of large numbers for
$N_j$
, and find the first-order asymptotics for the variance of
$N_j$
. Also, we prove a functional limit theorem for the vector-valued process
$(N_1(ut),\ldots, N_j(ut))_{u\geq0}$
, properly normalized and centered, as
$t\to\infty$
. The limit is a vector-valued Gaussian process whose components are integrated Brownian motions.
This paper is concerned with the optimal number of redundant allocation to n-component coherent systems consisting of heterogeneous dependent components. We assume that the system is built up of L groups of different components,
$L\geq 1$
, where there are
$n_i$
components in group i, and
$\sum_{i=1}^{L}n_i=n$
. The problem of interest is to allocate
$v_i$
active redundant components to each component of type i,
$i=1,\dots, L$
. To get the optimal values of
$v_i$
we propose two cost-based criteria. One of them is introduced based on the costs of renewing the failed components and the costs of refreshing the alive ones at the system failure time. The other criterion is proposed based on the costs of replacing the system at its failure time or at a predetermined time
$\tau$
, whichever occurs first. The expressions for the proposed functions are derived using the mixture representation of the system reliability function based on the notion of survival signature. We assume that a given copula function models the dependency structure between the components. In the particular case that the system is a series-parallel structure, we provide the formulas for the proposed cost-based functions. The results are discussed numerically for some specific coherent systems.
We investigate expansions for connectedness functions in the random connection model of continuum percolation in powers of the intensity. Precisely, we study the pair-connectedness and the direct-connectedness functions, related to each other via the Ornstein–Zernike equation. We exhibit the fact that the coefficients of the expansions consist of sums over connected and 2-connected graphs. In the physics literature, this is known to be the case more generally for percolation models based on Gibbs point processes and stands in analogy to the formalism developed for correlation functions in liquid-state statistical mechanics.
We find a representation of the direct-connectedness function and bounds on the intensity which allow us to pass to the thermodynamic limit. In some cases (e.g., in high dimensions), the results are valid in almost the entire subcritical regime. Moreover, we relate these expansions to the physics literature and we show how they coincide with the expression provided by the lace expansion.
In this paper we revisit some classical queueing systems such as the M
$^b$
/E
$_k$
/1/m and E
$_k$
/M
$^b$
/1/m queues, for which fast numerical and recursive methods exist to study their main performance measures. We present simple explicit results for the loss probability and queue length distribution of these queueing systems as well as for some related queues such as the M
$^b$
/D/1/m queue, the D/M
$^b$
/1/m queue, and fluid versions thereof. In order to establish these results we first present a simple analytical solution for the invariant measure of the M/E
$_k$
/1 queue that appears to be new.
We show that load-sharing models (a very special class of multivariate probability models for nonnegative random variables) can be used to obtain basic results about a multivariate extension of stochastic precedence and related paradoxes. Such results can be applied in several different fields. In particular, applications of them can be developed in the context of paradoxes which arise in voting theory. Also, an application to the notion of probability signature may be of interest, in the field of systems reliability.
The rich-get-richer rule reinforces actions that have been frequently chosen in the past. What happens to the evolution of individuals’ inclinations to choose an action when agents interact? Interaction tends to homogenize, while each individual dynamics tends to reinforce its own position. Interacting stochastic systems of reinforced processes have recently been considered in many papers, in which the asymptotic behavior is proven to exhibit almost sure synchronization. In this paper we consider models where, even if interaction among agents is present, absence of synchronization may happen because of the choice of an individual nonlinear reinforcement. We show how these systems can naturally be considered as models for coordination games or technological or opinion dynamics.
We prove a rate of convergence for the N-particle approximation of a second-order partial differential equation in the space of probability measures, such as the master equation or Bellman equation of the mean-field control problem under common noise. The rate is of order
$1/N$
for the pathwise error on the solution v and of order
$1/\sqrt{N}$
for the
$L^2$
-error on its L-derivative
$\partial_\mu v$
. The proof relies on backward stochastic differential equation techniques.
A system of mutually interacting superprocesses with migration is constructed as the limit of a sequence of branching particle systems arising from population models. The uniqueness in law of the superprocesses is established using the pathwise uniqueness of a system of stochastic partial differential equations, which is satisfied by the corresponding system of distribution function-valued processes.
Consider a finite or infinite collection of urns, each with capacity r, and balls randomly distributed among them. An overflow is the number of balls that are assigned to urns that already contain r balls. When
$r=1$
, this is the number of balls landing in non-empty urns, which has been studied in the past. Our aim here is to use martingale methods to study the asymptotics of the overflow in the general situation, i.e. for arbitrary r. In particular, we provide sufficient conditions for both Poissonian and normal asymptotics.
This article examines large-time behaviour of finite-state mean-field interacting particle systems. Our first main result is a sharp estimate (in the exponential scale) of the time required for convergence of the empirical measure process of the N-particle system to its invariant measure; we show that when time is of the order
$\exp\{N\Lambda\}$
for a suitable constant
$\Lambda > 0$
, the process has mixed well and it is close to its invariant measure. We then obtain large-N asymptotics of the second-largest eigenvalue of the generator associated with the empirical measure process when it is reversible with respect to its invariant measure. We show that its absolute value scales as
$\exp\{{-}N\Lambda\}$
. The main tools used in establishing our results are the large deviation properties of the empirical measure process from its large-N limit. As an application of the study of large-time behaviour, we also show convergence of the empirical measure of the system of particles to a global minimum of a certain ‘entropy’ function when particles are added over time in a controlled fashion. The controlled addition of particles is analogous to the cooling schedule associated with the search for a global minimum of a function using the simulated annealing algorithm.
We study the so-called frog model on
${\mathbb{Z}}$
with two types of lazy frogs, with parameters
$p_1,p_2\in (0,1]$
respectively, and a finite expected number of dormant frogs per site. We show that for any such
$p_1$
and
$p_2$
there is positive probability that the two types coexist (i.e. that both types activate infinitely many frogs). This answers a question of Deijfen, Hirscher, and Lopes in dimension one.
Motivated by applications to wireless networks, cloud computing, data centers, etc., stochastic processing networks have been studied in the literature under various asymptotic regimes. In the heavy traffic regime, the steady-state mean queue length is proved to be
$\Theta({1}/{\epsilon})$
, where
$\epsilon$
is the heavy traffic parameter (which goes to zero in the limit). The focus of this paper is on obtaining queue length bounds on pre-limit systems, thus establishing the rate of convergence to heavy traffic. For the generalized switch, operating under the MaxWeight algorithm, we show that the mean queue length is within
$\textrm{O}({\log}({1}/{\epsilon}))$
of its heavy traffic limit. This result holds regardless of the complete resource pooling (CRP) condition being satisfied. Furthermore, when the CRP condition is satisfied, we show that the mean queue length under the MaxWeight algorithm is within
$\textrm{O}({\log}({1}/{\epsilon}))$
of the optimal scheduling policy. Finally, we obtain similar results for the rate of convergence to heavy traffic of the total queue length in load balancing systems operating under the ‘join the shortest queue’ routeing algorithm.
We study the integrated telegraph process
$X_t$
under the assumption of general distribution for the random times between consecutive reversals of direction. Specifically,
$X_t$
represents the position, at time t, of a particle moving U time units upwards with velocity c and D time units downwards with velocity
$-c$
. The latter motions are repeated cyclically, according to independent alternating renewals. Explicit expressions for the probability law of
$X_t$
are given in the following cases: (i) (U, D) gamma-distributed; (ii) U exponentially distributed and D gamma-distributed. For certain values of the parameters involved, the probability law of
$X_t$
is provided in a closed form. Some expressions for the moment generating function of
$X_t$
and its Laplace transform are also obtained. The latter allows us to prove the existence of a Kac-type condition under which the probability density function of the integrated telegraph process, with identically distributed gamma intertimes, converges to that of the standard Brownian motion.
Finally, we consider the square of
$X_t$
and disclose its distribution function, specifying the expression for some choices of the distribution of (U, D).
We consider residue expansions for survival and density/mass functions of first-passage distributions in finite-state semi-Markov processes (SMPs) in continuous and integer time. Conditions are given which guarantee that the residue expansions for these functions have a dominant exponential/geometric term. The key condition assumes that the relevant states for first passage contain an irreducible class, thus ensuring the same sort of dominant exponential/geometric terms as one gets for phase-type distributions in Markov processes. Essentially, the presence of an irreducible class along with some other conditions ensures that the boundary singularity b for the moment generating function (MGF) of the first-passage-time distribution is a simple pole. In the continuous-time setting we prove that b is a dominant pole, in that the MGF has no other pole on the vertical line
$\{\text{Re}(s)=b\}.$
In integer time we prove that b is dominant if all holding-time mass functions for the SMP are aperiodic and non-degenerate. The expansions and pole characterisations address first passage to a single new state or a subset of new states, and first return to the starting state. Numerical examples demonstrate that the residue expansions are considerably more accurate than saddlepoint approximations and can provide a substitute for exact computation above the 75th percentile.
We consider two-dimensional Lévy processes reflected to stay in the positive quadrant. Our focus is on the non-standard regime when the mean of the free process is negative but the reflection vectors point away from the origin, so that the reflected process escapes to infinity along one of the axes. Under rather general conditions, it is shown that such behaviour is certain and each component can dominate the other with positive probability for any given starting position. Additionally, we establish the corresponding invariance principle providing justification for the use of the reflected Brownian motion as an approximate model. Focusing on the probability that the first component dominates, we derive a kernel equation for the respective Laplace transform in the starting position. This is done for the compound Poisson model with negative exponential jumps and, by means of approximation, for the Brownian model. Both equations are solved via boundary value problem analysis, which also yields the domination probability when starting at the origin. Finally, certain asymptotic analysis and numerical results are presented.
Let
$X_t^\sharp$
be a multivariate process of the form
$X_t =Y_t - Z_t$
,
$X_0=x$
, killed at some terminal time T, where
$Y_t$
is a Markov process having only jumps of length smaller than
$\delta$
, and
$Z_t$
is a compound Poisson process with jumps of length bigger than
$\delta$
, for some fixed
$\delta>0$
. Under the assumptions that the summands in
$Z_t$
are subexponential, we investigate the asymptotic behaviour of the potential function
$u(x)= \mathbb{E}^x \int_0^\infty \ell\big(X_s^\sharp\big)ds$
. The case of heavy-tailed entries in
$Z_t$
corresponds to the case of ‘big claims’ in insurance models and is of practical interest. The main approach is based on the fact that u(x) satisfies a certain renewal equation.
The generalized perturbative approach is an all-purpose variant of Stein’s method used to obtain rates of normal approximation. Originally developed for functions of independent random variables, this method is here extended to functions of the realization of a hidden Markov model. In this dependent setting, rates of convergence are provided in some applications, leading, in each instance, to an extra log-factor vis-à-vis the rate in the independent case.