To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Previous approaches to modelling interval-censored data have often relied on assumptions of homogeneity in the sense that the censoring mechanism, the underlying distribution of occurrence times, or both, are assumed to be time-invariant. In this work, we introduce a model which allows for non-homogeneous behaviour in both cases. In particular, we outline a censoring mechanism based on a non-homogeneous alternating renewal process in which interval generation is assumed to be time-dependent, and we propose a Markov point process model for the underlying occurrence time distribution. We prove the existence of this process and derive the conditional distribution of the occurrence times given the intervals. We provide a framework within which the process can be accurately modelled, and subsequently compare our model to the homogeneous approach through a number of illustrative examples.
The binary contact path process (BCPP) introduced in Griffeath (1983) describes the spread of an epidemic on a graph and is an auxiliary model in the study of improving upper bounds of the critical value of the contact process. In this paper, we are concerned with limit theorems of the occupation time of a normalized version of the BCPP (NBCPP) on a lattice. We first show that the law of large numbers of the occupation time process is driven by the identity function when the dimension of the lattice is at least 3 and the infection rate of the model is sufficiently large conditioned on the initial state of the NBCPP being distributed with a particular invariant distribution. Then we show that the centered occupation time process of the NBCPP converges in finite-dimensional distributions to a Brownian motion when the dimension of the lattice and the infection rate of the model are sufficiently large and the initial state of the NBCPP is distributed with the aforementioned invariant distribution.
We investigate the hyperuniformity of marked Gibbs point processes that have weak dependencies among distant points whilst the interactions of close points are kept arbitrary. Various stability and range assumptions are imposed on the Papangelou intensity in order to prove that the resulting point process is not hyperuniform. The scope of our results covers many frequently used models, including Gibbs point processes with a superstable, lower-regular, integrable pair potential, as well as the Widom–Rowlinson model with random radii and Gibbs point processes with interactions based on Voronoi tessellations and nearest-neighbour graphs.
We introduce a bivariate tempered space-fractional Poisson process (BTSFPP) by time-changing the bivariate Poisson process with an independent tempered $\alpha$-stable subordinator. We study its distributional properties and its connection to differential equations. The Lévy measure for the BTSFPP is also derived. A bivariate competing risks and shock model based on the BTSFPP for predicting the failure times of items that undergo two random shocks is also explored. The system is supposed to break when the sum of two types of shock reaches a certain random threshold. Various results related to reliability, such as reliability function, hazard rates, failure density, and the probability that failure occurs due to a certain type of shock, are studied. We show that for a general Lévy subordinator, the failure time of the system is exponentially distributed with mean depending on the Laplace exponent of the Lévy subordinator when the threshold has a geometric distribution. Some special cases and several typical examples are also demonstrated.
Let $\mathcal{V}$ and $\mathcal{U}$ be the point sets of two independent homogeneous Poisson processes on $\mathbb{R}^d$. A graph $\mathcal{G}_\mathcal{V}$ with vertex set $\mathcal{V}$ is constructed by first connecting pairs of points (v, u) with $v\in\mathcal{V}$ and $u\in\mathcal{U}$ independently with probability $g(v-u)$, where g is a non-increasing radial function, and then connecting two points $v_1,v_2\in\mathcal{V}$ if and only if they have a joint neighbor $u\in\mathcal{U}$. This gives rise to a random intersection graph on $\mathbb{R}^d$. Local properties of the graph, including the degree distribution, are investigated and quantified in terms of the intensities of the underlying Poisson processes and the function g. Furthermore, the percolation properties of the graph are characterized and shown to differ depending on whether g has bounded or unbounded support.
We define the co-spectral radius of inclusions ${\mathcal S}\leq {\mathcal R}$ of discrete, probability- measure-preserving equivalence relations as the sampling exponent of a generating random walk on the ambient relation. The co-spectral radius is analogous to the spectral radius for random walks on $G/H$ for inclusion $H\leq G$ of groups. For the proof, we develop a more general version of the 2–3 method we used in another work on the growth of unimodular random rooted trees. We use this method to show that the walk growth exists for an arbitrary unimodular random rooted graph of bounded degree. We also investigate how the co-spectral radius behaves for hyperfinite relations, and discuss new critical exponents for percolation that can be defined using the co-spectral radius.
We obtain the asymptotic behaviour of the longest increasing/non-decreasing subsequences in a random uniform multiset permutation in which each element in $\{1,\dots,n\}$ occurs k times, where k may depend on n. This generalises the famous Ulam–Hammersley problem of the case $k=1$. The proof relies on poissonisation and on a careful non-asymptotic analysis of variants of the Hammersley–Aldous–Diaconis particle system.
In this work, we consider two sets of dependent variables $\{X_{1},\ldots,X_{n}\}$ and $\{Y_{1},\ldots,Y_{n}\}$, where $X_{i}\sim EW(\alpha_{i},\lambda_{i},k_{i})$ and $Y_{i}\sim EW(\beta_{i},\mu_{i},l_{i})$, for $i=1,\ldots, n$, which are coupled by Archimedean copulas having different generators. We then establish different inequalities between two extremes, namely, $X_{1:n}$ and $Y_{1:n}$ and $X_{n:n}$ and $Y_{n:n}$, in terms of the usual stochastic, star, Lorenz, hazard rate, reversed hazard rate and dispersive orders. Several examples and counterexamples are presented for illustrating all the results established here. Some of the results here extend the existing results of [5] (Barmalzan, G., Ayat, S.M., Balakrishnan, N., & Roozegar, R. (2020). Stochastic comparisons of series and parallel systems with dependent heterogeneous extended exponential components under Archimedean copula. Journal of Computational and Applied Mathematics380: Article No. 112965).
We present a detailed analysis of random motions moving in higher spaces with a natural number of velocities. In the case of the so-called minimal random dynamics, under some broad assumptions, we give the joint distribution of the position of the motion (for both the inner part and the boundary of the support) and the number of displacements performed with each velocity. Explicit results for cyclic and complete motions are derived. We establish useful relationships between motions moving in different spaces, and we derive the form of the distribution of the movements in arbitrary dimension. Finally, we investigate further properties for stochastic motions governed by non-homogeneous Poisson processes.
This paper considers the family of invariant measures of Markovian mean-field interacting particle systems on a countably infinite state space and studies its large deviation asymptotics. The Freidlin–Wentzell quasipotential is the usual candidate rate function for the sequence of invariant measures indexed by the number of particles. The paper provides two counterexamples where the quasipotential is not the rate function. The quasipotential arises from finite-horizon considerations. However, there are certain barriers that cannot be surmounted easily in any finite time horizon, but these barriers can be crossed in the stationary regime. Consequently, the quasipotential is infinite at some points where the rate function is finite. After highlighting this phenomenon, the paper studies some sufficient conditions on a class of interacting particle systems under which one can continue to assert that the Freidlin–Wentzell quasipotential is indeed the rate function.
We show that for arrival processes, the ‘harmonic new better than used in expectation’ (HNBUE) (or ‘harmonic new worse than used in expectation’, HNWUE) property is a sufficient condition for inequalities between the time and customer averages of the system if the state of the system between arrival epochs is stochastically decreasing and convex and the lack of anticipation assumption is satisfied. HNB(W)UE is a wider class than NB(W)UE, being the largest of all available classes of distributions with positive (negative) aging properties. Thus, this result represents an important step beyond existing result on inequalities between time and customer averages, which states that for arrival processes, the NB(W)UE property is a sufficient condition for inequalities.
This paper studies the input-queued switch operating under the MaxWeight algorithm when the arrivals are according to a Markovian process. We exactly characterize the heavy-traffic scaled mean sum queue length in the heavy-traffic limit, and show that it is within a factor of less than 2 from a universal lower bound. Moreover, we obtain lower and upper bounds that are applicable in all traffic regimes and become tight in the heavy-traffic regime.
We obtain these results by generalizing the drift method recently developed for the case of independent and identically distributed arrivals to the case of Markovian arrivals. We illustrate this generalization by first obtaining the heavy-traffic mean queue length and its distribution in a single-server queue under Markovian arrivals and then applying it to the case of an input-queued switch.
The key idea is to exploit the geometric mixing of finite-state Markov chains, and to work with a time horizon that is chosen so that the error due to mixing depends on the heavy-traffic parameter.
We calculate the mean throughput, number of collisions, successes, and idle slots for random tree algorithms with successive interference cancellation. Except for the case of the throughput for the binary tree, all the results are new. We furthermore disprove the claim that only the binary tree maximizes throughput. Our method works with many observables and can be used as a blueprint for further analysis.
We study heterogeneously interacting diffusive particle systems with mean-field-type interaction characterized by an underlying graphon and their finite particle approximations. Under suitable conditions, we obtain exponential concentration estimates over a finite time horizon for both 1- and 2-Wasserstein distances between the empirical measures of the finite particle systems and the averaged law of the graphon system.
This article considers the individual equilibrium behavior and socially optimal strategy in a fluid queue with two types of parallel customers and incomplete fault. Assume that the working state and the incomplete fault state appear alternately in the buffer. Different from the linear revenue and expenditure structure, an exponential utility function can be constructed to obtain the equilibrium balking thresholds in the fully observable case. Besides, the steady-state probability distribution and the corresponding expected social benefit are derived based on the renewal process and the standard theory of linear ordinary differential equations. Furthermore, a reasonable entrance fee strategy is discussed under the condition that the fluid accepts the globally optimal strategies. Finally, the effects of the diverse system parameters on the entrance fee and the expected social benefit are explicitly illustrated by numerical comparisons.
We study 2-stage game-theoretic problem oriented 3-stage service policy computing, convolutional neural network (CNN) based algorithm design, and simulation for a blockchained buffering system with federated learning. More precisely, based on the game-theoretic problem consisting of both “win-lose” and “win-win” 2-stage competitions, we derive a 3-stage dynamical service policy via a saddle point to a zero-sum game problem and a Nash equilibrium point to a non-zero-sum game problem. This policy is concerning users-selection, dynamic pricing, and online rate resource allocation via stable digital currency for the system. The main focus is on the design and analysis of the joint 3-stage service policy for given queue/environment state dependent pricing and utility functions. The asymptotic optimality and fairness of this dynamic service policy is justified by diffusion modeling with approximation theory. A general CNN based policy computing algorithm flow chart along the line of the so-called big model framework is presented. Simulation case studies are conducted for the system with three users, where only two of the three users can be selected into the service by a zero-sum dual cost game competition policy at a time point. Then, the selected two users get into service and share the system rate service resource through a non-zero-sum dual cost game competition policy. Applications of our policy in the future blockchain based Internet (e.g., metaverse and web3.0) and supply chain finance are also briefly illustrated.
We consider bond percolation on high-dimensional product graphs $G=\square _{i=1}^tG^{(i)}$, where $\square$ denotes the Cartesian product. We call the $G^{(i)}$ the base graphs and the product graph $G$ the host graph. Very recently, Lichev (J. Graph Theory, 99(4):651–670, 2022) showed that, under a mild requirement on the isoperimetric properties of the base graphs, the component structure of the percolated graph $G_p$ undergoes a phase transition when $p$ is around $\frac{1}{d}$, where $d$ is the average degree of the host graph.
In the supercritical regime, we strengthen Lichev’s result by showing that the giant component is in fact unique, with all other components of order $o(|G|)$, and determining the sharp asymptotic order of the giant. Furthermore, we answer two questions posed by Lichev (J. Graph Theory, 99(4):651–670, 2022): firstly, we provide a construction showing that the requirement of bounded degree is necessary for the likely emergence of a linear order component; secondly, we show that the isoperimetric requirement on the base graphs can be, in fact, super-exponentially small in the dimension. Finally, in the subcritical regime, we give an example showing that in the case of irregular high-dimensional product graphs, there can be a polynomially large component with high probability, very much unlike the quantitative behaviour seen in the Erdős-Rényi random graph and in the percolated hypercube, and in fact in any regular high-dimensional product graphs, as shown by the authors in a companion paper (Percolation on high-dimensional product graphs. arXiv:2209.03722, 2022).
We study three classes of shock models governed by an inverse gamma mixed Poisson process (IGMP), namely a mixed Poisson process with an inverse gamma mixing distribution. In particular, we analyze (1) the extreme shock model, (2) the δ-shock model, and the (3) cumulative shock model. For the latter, we assume a constant and an exponentially distributed random threshold and consider different choices for the distribution of the amount of damage caused by a single shock. For all the treated cases, we obtain the survival function, together with the expected value and the variance of the failure time. Some properties of the inverse gamma mixed Poisson process are also disclosed.
We continue with the systematic study of the speed of extinction of continuous-state branching processes in Lévy environments under more general branching mechanisms. Here, we deal with the weakly subcritical regime under the assumption that the branching mechanism is regularly varying. We extend recent results of Li and Xu (2018) and Palau et al. (2016), where it is assumed that the branching mechanism is stable, and complement the recent articles of Bansaye et al. (2021) and Cardona-Tobón and Pardo (2021), where the critical and the strongly and intermediate subcritical cases were treated, respectively. Our methodology combines a path analysis of the branching process together with its Lévy environment, fluctuation theory for Lévy processes, and the asymptotic behaviour of exponential functionals of Lévy processes. Our approach is inspired by the last two previously cited papers, and by Afanasyev et al. (2012), where the analogue was obtained.