To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Consider Bernoulli bond percolation on a graph nicely embedded in hyperbolic space $\mathbb{H}^d$ in such a way that it admits a transitive action by isometries of $\mathbb{H}^d$. Let $p_{\text{a}}$ be the supremum of all percolation parameters such that no point at infinity of $\mathbb{H}^d$ lies in the boundary of the cluster of a fixed vertex with positive probability. Then for any parameter $p < p_{\text{a}}$, almost surely every percolation cluster is thin-ended, i.e. has only one-point boundaries of ends.
We study a sceptical rumour model on the non-negative integer line. The model starts with two spreaders at sites 0, 1 and sceptical ignorants at all other natural numbers. Then each sceptic transmits the rumour, independently, to the individuals within a random distance on its right after s/he receives the rumour from at least two different sources. We say that the process survives if the size of the set of vertices which heard the rumour in this fashion is infinite. We calculate the probability of survival exactly, and obtain some bounds for the tail distribution of the final range of the rumour among sceptics. We also prove that the rumour dies out among non-sceptics and sceptics, under the same condition.
Under the assumption that sequences of graphs equipped with resistances, associated measures, walks and local times converge in a suitable Gromov-Hausdorff topology, we establish asymptotic bounds on the distribution of the $\varepsilon$-blanket times of the random walks in the sequence. The precise nature of these bounds ensures convergence of the $\varepsilon$-blanket times of the random walks if the $\varepsilon$-blanket time of the limiting diffusion is continuous at $\varepsilon$ with probability 1. This result enables us to prove annealed convergence in various examples of critical random graphs, including critical Galton-Watson trees and the Erdős-Rényi random graph in the critical window. We highlight that proving continuity of the $\varepsilon$-blanket time of the limiting diffusion relies on the scale invariance of a finite measure that gives rise to realizations of the limiting compact random metric space, and therefore we expect our results to hold for other examples of random graphs with a similar scale invariance property.
The life distribution of a device subject to shocks governed by a homogeneous Poisson process is shown to have a bathtub failure rate average (BFRA) when the probabilities $\bar{P}_k$ of surviving k shocks possess the corresponding discrete property. We prove closure under the formation of weak limits for BFRA distributions and explore related moment convergence issues within the BFRA family. Similar results for increasing and decreasing failure rate average distributions are obtained either independently or as consequences of our results. We also establish some results outlining the positions of various non-monotonic ageing classes such as bathtub failure rate, increasing initially then decreasing mean residual life, new worse then better than used in expectation, and increasing initially then decreasing mean time to failure in the hierarchy. Finally, an open problem is posed and a partial solution provided.
In the classical framework, a random walk on a group is a Markov chain with independent and identically distributed increments. In some sense, random walks are time and space homogeneous. This paper is devoted to a class of inhomogeneous random walks on $\mathbb{Z}^d$ termed ‘Markov additive processes’ (also known as Markov random walks, random walks with internal degrees of freedom, or semi-Markov processes). In this model, the increments of the walk are still independent but their distributions are dictated by a Markov chain, termed the internal Markov chain. While this model is largely studied in the literature, most of the results involve internal Markov chains whose operator is quasi-compact. This paper extends two results for more general internal operators: a local limit theorem and a sufficient criterion for their transience. These results are thereafter applied to a new family of models of drifted random walks on the lattice $\mathbb{Z}^d$.
We propose a stochastic model for the failure times of items subject to two external random shocks occurring as events in an underlying bivariate counting process. This is a special formulation of the competing risks model, which is of interest in reliability theory and survival analysis. Specifically, we assume that a system, or an item, fails when the sum of the two types of shock reaches a critical random threshold. In detail, the two kinds of shock occur according to a bivariate space-fractional Poisson process, which is a two-dimensional vector of independent homogeneous Poisson processes time-changed by an independent stable subordinator. Various results are given, such as analytic hazard rates, failure densities, the probability that the failure occurs due to a specific type of shock, and the survival function. Some special cases and ageing notions related to the NBU characterization are also considered. In this way we generalize certain results in the literature, which can be recovered when the underlying process reduces to the homogeneous Poisson process.
We present a reflection principle for a wide class of symmetric random motions with finite velocities. We propose a deterministic argument which is then applied to trajectories of stochastic processes. In the case of symmetric correlated random walks and the symmetric telegraph process, we provide a probabilistic result recalling the classical reflection principle for Brownian motion, but where the initial velocity has a crucial role. In the case of the telegraph process we also present some consequences which lead to further reflection-type characteristics of the motion.
Let $G=(V,E)$ be a countable graph. The Bunkbed graph of $G$ is the product graph $G \times K_2$, which has vertex set $V\times \{0,1\}$ with “horizontal” edges inherited from $G$ and additional “vertical” edges connecting $(w,0)$ and $(w,1)$ for each $w \in V$. Kasteleyn’s Bunkbed conjecture states that for each $u,v \in V$ and $p\in [0,1]$, the vertex $(u,0)$ is at least as likely to be connected to $(v,0)$ as to $(v,1)$ under Bernoulli-$p$ bond percolation on the bunkbed graph. We prove that the conjecture holds in the $p \uparrow 1$ limit in the sense that for each finite graph $G$ there exists $\varepsilon (G)\gt 0$ such that the bunkbed conjecture holds for $p \geqslant 1-\varepsilon (G)$.
Narrow escape and narrow capture problems which describe the average times required to stop the motion of a randomly travelling particle within a domain have applications in various areas of science. While for general domains, it is known how the escape time decreases with the increase of the trap sizes, for some specific 2D and 3D domains, higher-order asymptotic formulas have been established, providing the dependence of the escape time on the sizes and locations of the traps. Such results allow the use of global optimisation to seek trap arrangements that minimise average escape times. In a recent paper (Iyaniwura (2021) SIAM Rev.63(3), 525–555), an explicit size- and trap location-dependent expansion of the average mean first passage time (MFPT) in a 2D elliptic domain was derived. The goal of this work is to systematically seek global minima of MFPT for $1\leq N\leq 50$ traps in elliptic domains using global optimisation techniques and compare the corresponding putative optimal trap arrangements for different values of the domain eccentricity. Further, an asymptotic formula for the average MFPT in elliptic domains with N circular traps of arbitrary sizes is derived, and sample optimal configurations involving non-equal traps are computed.
We consider supercritical site percolation on the $d$-dimensional hypercube $Q^d$. We show that typically all components in the percolated hypercube, besides the giant, are of size $O(d)$. This resolves a conjecture of Bollobás, Kohayakawa, and Łuczak from 1994.
Layer reinsurance treaty is a common form obtained in the problem of optimal reinsurance design. In this paper, we study allocations of policy limits in layer reinsurance treaties with dependent risks. We investigate the effects of orderings and heterogeneity among policy limits on the expected utility functions of the terminal wealth from the viewpoint of risk-averse insurers faced with right tail weakly stochastic arrangement increasing losses. Orderings on optimal allocations are presented for normal layer reinsurance contracts under certain conditions. Parallel studies are also conducted for randomized layer reinsurance contracts. As a special case, the worst allocations of policy limits are also identified when the exact dependence structure among the losses is unknown. Numerical examples are presented to shed light on the theoretical findings.
This paper studies the critical and near-critical regimes of the planar random-cluster model on $\mathbb Z^2$ with cluster-weight $q\in [1,4]$ using novel coupling techniques. More precisely, we derive the scaling relations between the critical exponents $\beta $, $\gamma $, $\delta $, $\eta $, $\nu $, $\zeta $ as well as $\alpha $ (when $\alpha \ge 0$). As a key input, we show the stability of crossing probabilities in the near-critical regime using new interpretations of the notion of the influence of an edge in terms of the rate of mixing. As a byproduct, we derive a generalisation of Kesten’s classical scaling relation for Bernoulli percolation involving the ‘mixing rate’ critical exponent $\iota $ replacing the four-arm event exponent $\xi _4$.
We consider a Lévy process Y(t) that is not continuously observed, but rather inspected at Poisson($\omega$) moments only, over an exponentially distributed time $T_\beta$ with parameter $\beta$. The focus lies on the analysis of the distribution of the running maximum at such inspection moments up to $T_\beta$, denoted by $Y_{\beta,\omega}$. Our main result is a decomposition: we derive a remarkable distributional equality that contains $Y_{\beta,\omega}$ as well as the running maximum process $\bar Y(t)$ at the exponentially distributed times $T_\beta$ and $T_{\beta+\omega}$. Concretely, $\overline{Y}(T_\beta)$ can be written as the sum of two independent random variables that are distributed as $Y_{\beta,\omega}$ and $\overline{Y}(T_{\beta+\omega})$. The distribution of $Y_{\beta,\omega}$ can be identified more explicitly in the two special cases of a spectrally positive and a spectrally negative Lévy process. As an illustrative example of the potential of our results, we show how to determine the asymptotic behavior of the bankruptcy probability in the Cramér–Lundberg insurance risk model.
We consider a risk model with a counting process whose intensity is a Markovian shot-noise process, to resolve one of the disadvantages of the Cramér–Lundberg model, namely the constant intensity of the Poisson process. Due to this structure, we can apply the theory of piecewise deterministic Markov processes on a multivariate process containing the intensity and the reserve process, which allows us to identify a family of martingales. Eventually, we use change of measure techniques to derive an upper bound for the ruin probability in this model. Exploiting a recurrent structure of the shot-noise process, even the asymptotic behaviour of the ruin probability can be determined.
In this article we provide new results for the asymptotic behavior of a time-fractional birth and death process $N_{\alpha}(t)$, whose transition probabilities $\mathbb{P}[N_{\alpha}(t)=\,j\mid N_{\alpha}(0)=i]$ are governed by a time-fractional system of differential equations, under the condition that it is not killed. More specifically, we prove that the concepts of quasi-limiting distribution and quasi-stationary distribution do not coincide, which is a consequence of the long-memory nature of the process. In addition, exact formulas for the quasi-limiting distribution and its rate convergence are presented. In the first sections, we revisit the two equivalent characterizations for this process: the first one is a time-changed classic birth and death process, whereas the second one is a Markov renewal process. Finally, we apply our main theorems to the linear model originally introduced by Orsingher and Polito [23].
We study generalizations of the forest fire model introduced in [4] and [10] by allowing the rates at which the trees grow to depend on their location, introducing long-range burning, as well as a continuous-space generalization of the model. We establish that in all the models in consideration the expected time required to reach a site at distance x from the origin is of order $(\!\log x)^{(\!\log2)^{-1}+\delta}$ for any $\delta>0$.
We prove that for a discrete determinantal process the BK inequality occurs for increasing events generated by simple points. We also give some elementary but nonetheless appealing relationships between a discrete determinantal process and the well-known CS decomposition.
We derive three critical exponents for Bernoulli site percolation on the uniform infinite planar triangulation (UIPT). First, we compute explicitly the probability that the root cluster is infinite. As a consequence, we show that the off-critical exponent for site percolation on the UIPT is $\beta = 1/2$. Then we establish an integral formula for the generating function of the number of vertices in the root cluster. We use this formula to prove that, at criticality, the probability that the root cluster has at least n vertices decays like $n^{-1/7}$. Finally, we also derive an expression for the law of the perimeter of the root cluster and use it to establish that, at criticality, the probability that the perimeter of the root cluster is equal to n decays like $n^{-4/3}$. Among these three exponents, only the last one was previously known. Our main tools are the so-called gasket decomposition of percolation clusters, generic properties of random Boltzmann maps, and analytic combinatorics.
Scale-free percolation is a stochastic model for complex networks. In this spatial random graph model, vertices $x,y\in\mathbb{Z}^d$ are linked by an edge with probability depending on independent and identically distributed vertex weights and the Euclidean distance $|x-y|$. Depending on the various parameters involved, we get a rich phase diagram. We study graph distance and compare it to the Euclidean distance of the vertices. Our main attention is on a regime where graph distances are (poly-)logarithmic in the Euclidean distance. We obtain improved bounds on the logarithmic exponents. In the light tail regime, the correct exponent is identified.
We consider an (R, Q) inventory model with two types of orders, normal orders and emergency orders, which are issued at different inventory levels. These orders are delivered after exponentially distributed lead times. In between deliveries, the inventory level decreases in a state-dependent way, according to a release rate function $\alpha({\cdot})$. This function represents the fluid demand rate; it could be controlled by a system manager via price adaptations. We determine the mean number of downcrossings $\theta(x)$ of any level x in one regenerative cycle, and use it to obtain the steady-state density f (x) of the inventory level. We also derive the rates of occurrence of normal deliveries and of emergency deliveries, and the steady-state probability of having zero inventory.