We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present a family of radical convolution Banach algebras on intervals (0,a] which are of Sobolev type; that is, they are defined in terms of derivatives. Among other properties, it is shown that all epimorphisms and derivations of such algebras are bounded. Also, we give examples of nontrivial concrete derivations.
We characterise solutions f,g:ℝ→ℝ of the functional equation f(x+g(x)y)=f(x)f(y) under the assumption that f is continuous. Our considerations refer mainly to a paper by Chudziak [‘Semigroup-valued solutions of the Goła̧b–Schinzel functional equation’, Abh. Math. Semin. Univ. Hambg.76, (2006), 91–98], in which the author studied the same equation assuming that g is continuous.
We consider the convex hull ℬk of the symmetric moment curve Uk(t)=(cos t,sin t,cos 3t,sin 3t,…,cos (2k−1)t,sin (2k−1)t) in ℝ2k, where t ranges over the unit circle 𝕊=ℝ/2πℤ. The curve Uk(t) is locally neighborly: as long as t1,…,tk lie in an open arc of 𝕊 of a certain length ϕk>0 , the convex hull of the points Uk (t1),…,Uk (tk)is a face of ℬk. We characterize the maximum possible length ϕk, proving, in particular, that ϕk >π/2for all k and that the limit of ϕk is π/2as k grows. This allows us to construct centrally symmetric polytopes with a record number of faces.
The main objective of this paper is a study of some new refinements and converses of multidimensional Hilbert-type inequalities with nonconjugate exponents. Such extensions are deduced with the help of some remarkable improvements of the well-known Hölder inequality. First, we obtain refinements and converses of the general multidimensional Hilbert-type inequality in both quotient and difference form. We then apply the results to homogeneous kernels with negative degree of homogeneity. Finally, we consider some particular settings with homogeneous kernels and weighted functions, and compare our results with those in the literature.
We use a change-of-variable formula in the framework of functions of bounded variation to derive an explicit formula for the Fourier transform of the level crossing function of shot noise processes with jumps. We illustrate the result in some examples and give some applications. In particular, it allows us to study the asymptotic behavior of the mean number of level crossings as the intensity of the Poisson point process of the shot noise process goes to infinity.
The purpose of this paper is to study the existence of periodic solutions and the topological structure of the solution set of first-order differential equations involving the distributional Henstock–Kurzweil integral. The distributional Henstock–Kurzweil integral is a general integral, which includes the Lebesgue and Henstock–Kurzweil integrals. The main results extend some previously known results in the literature.
In this paper, using the Schauder Fixed Point Theorem and the Vidossich Theorem, we study the existence of solutions and the structure of the set of solutions of the Darboux problem involving the distributional Henstock–Kurzweil integral. The two theorems presented in this paper are extensions of the previous results of Deblasi and Myjak and of Bugajewski and Szufla.
In this paper we extend some estimates of the right-hand side of a Hermite–Hadamard type inequality for functions whose derivatives’ absolute values are P-convex. Applications to the trapezoidal formula and special means are introduced.
General three-point quadrature formulas for the approximate evaluation of an integral of a function f over [0,1], through the values f(x), f(1/2), f(1−x), f′(0) and f′(1), are derived via the extended Euler formula. Such quadratures are sometimes called “corrected” or “quadratures with end corrections” and have a higher accuracy than the adjoint classical formulas, which only include the values f(x), f(1/2)and f(1−x) . The Gauss three-point, corrected Simpson, corrected dual Simpson, corrected Maclaurin and corrected Gauss two-point formulas are recaptured as special cases. Finally, sharp estimates of error are given for this type of quadrature formula.
A generalisation of Descartes’ rule of signs to other functions is derived and a bound for the number of positive zeros of a class of integral transforms is deduced from that. A more precise rule of signs is also discussed in the light of these results.
Some inequalities of Jensen type for Q-class functions are proved. More precisely, a refinement of the inequality f((1/P)∑ ni=1pixi)≤P∑ ni=1(f(xi)/pi) is given in which p1,…,pn are positive numbers, P=∑ ni=1pi and f is a Q-class function. The notion of the jointly Q-class function is introduced and some Jensen type inequalities for these functions are proved. Some Ostrowski and Hermite–Hadamard type inequalities related to Q-class functions are presented as well.
We extract a quantitative variant of uniqueness from the usual hypotheses of the implicit function theorem. Not only does this lead to an a priori proof of continuity, but also to an alternative, full proof of the implicit function theorem. Additionally, we investigate implicit functions as a case of the unique existence paradigm with parameters.
We find new properties for the space R(X), introduced by Soria in the study of the best constant for the Hardy operator minus the identity. In particular, we characterize when R(X) coincides with the minimal Lorentz space Λ(X). The condition that R(X) ≠ {0} is also described in terms of the embedding (L1, ∞ ∩ L∞) ⊂ X. Finally, we also show the existence of a minimal rearrangement-invariant Banach function space (RIBFS) X among those for which R(X) ≠ {0} (which is the RIBFS envelope of the quasi-Banach space L1, ∞ ∩ L∞).
The superadditivity and subadditivity of some functionals associated with the Riemann–Stieltjes integral are established. Applications in connection to Ostrowski’s and the generalized trapezoidal inequalities and for special means are provided.
We define an infinite class of fractals, called horizontally and vertically blocked labyrinth fractals, which are dendrites and special Sierpiński carpets. Between any two points in the fractal there is a unique arc α; the length of α is infinite and the set of points where no tangent to α exists is dense in α.
Some inequalities in terms of the Gâteaux derivatives related to Jensen’s inequality for convex functions defined on linear spaces are given. Applications for norms, mean f-deviations and f-divergence measures are provided as well.
The aim of this paper is to analyze a class of random processes which models the motion of a particle on the real line with random velocity and subject to the action of friction. The speed randomly changes when a Poissonian event occurs. We study the characteristic and moment generating functions of the position reached by the particle at time t > 0. We are able to derive the explicit probability distributions in a few cases. The moments are also widely analyzed. For the random motions having an explicit density law, further interesting probabilistic interpretations emerge if we consider randomly varying time. Essentially, we consider two different types of random time, namely Bessel and gamma times, which contain, as particular cases, some important probability distributions (e.g. Gaussian, exponential). For the random processes built by means of these compositions, we derive the probability distributions for a fixed number of Poisson events. Some remarks on possible extensions to random motions in higher spaces are proposed. We focus our attention on the persistent planar random motion.
We show that the conjecture of Kannan, Lovász, and Simonovits on isoperimetric properties of convex bodies and log-concave measures is true for log-concave measures of the form ρ(∣x∣B) dx on ℝn and ρ(t,∣x∣B) dx on ℝ1+n, where ∣x∣B is the norm associated to any convex body B already satisfying the conjecture. In particular, the conjecture holds for convex bodies of revolution.