To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Some better estimates for the difference between the integral mean of a function and its mean over a subinterval are established. Various applications for special means and probability density functions are also given.
We consider two fractional versions of a family of nonnegative integer-valued processes. We prove that their probability mass functions solve fractional Kolmogorov forward equations, and we show the overdispersion of these processes. As particular examples in this family, we can define fractional versions of some processes in the literature as the Pólya-Aeppli process, the Poisson inverse Gaussian process, and the negative binomial process. We also define and study some more general fractional versions with two fractional parameters.
A new formula for Adomian polynomials is introduced and applied to obtain truncated series solutions for fractional initial value problems with nondifferentiable functions. These kinds of equations contain a fractional single term which is examined using Jumarie fractional derivatives and fractional Taylor series for nondifferentiable functions. The property of nonlocality of these equations is examined, and the existence and uniqueness of solutions are discussed. Convergence and error analysis for the Adomian series solution are also studied. Numerical examples show the accuracy and efficiency of this formula for solving initial value problems for high-order fractional differential equations.
We study graded group-valued continuously differentiable mappings defined on stratified groups, where differentiability is understood with respect to the group structure. We characterize these mappings by a system of nonlinear first-order PDEs, establishing a quantitative estimate for their difference quotient. This provides us with a mean value estimate that allows us to prove both the inverse mapping theorem and the implicit function theorem. The latter theorem also relies on the fact that the differential admits a proper factorization of the domain into a suitable inner semidirect product. When this splitting property of the differential holds in the target group, then the inverse mapping theorem leads us to the rank theorem. Both implicit function theorem and rank theorem naturally introduce the classes of image sets and level sets. For commutative groups, these two classes of sets coincide and correspond to the usual submanifolds. In noncommutative groups, we have two distinct classes of intrinsic submanifolds. They constitute the so-called intrinsic graphs, that are defined with respect to the algebraic splitting and everywhere possess a unique metric tangent cone equipped with a natural group structure.
We investigate island systems with continuous height functions and strongly laminar systems which are laminar systems containing sets with disjoint boundaries. In the discrete case, we show that for a maximal rectangular system of islands $ \mathcal{H} $ on an $m$ by $n$ rectangular grid we have $\lceil \min (m, n)/ 4\rceil \leq \vert \mathcal{H} \vert \leq \lceil m/ 2\rceil \lceil n/ 2\rceil $. In the continuous case we show that under some conditions maximal strongly laminar systems $ \mathcal{H} $ have cardinality ${\aleph }_{0} $ or ${2}^{{\aleph }_{0} } $ and present examples with $\vert \mathcal{H} \vert = {\aleph }_{0} $.
Using the paths of steepest descent, we prove precise bounds with numerical implied constants for the modified Bessel function ${K}_{ir} (x)$ of imaginary order and its first two derivatives with respect to the order. We also prove precise asymptotic bounds on more general (mixed) derivatives without working out numerical implied constants. Moreover, we present an absolutely and rapidly convergent series for the computation of ${K}_{ir} (x)$ and its derivatives, as well as a formula based on Fourier interpolation for computing with many values of $r$. Finally, we have implemented a subset of these features in a software library for fast and rigorous computation of ${K}_{ir} (x)$.
Necessary and sufficient conditions are presented for a function involving the divided difference of the psi function to be completely monotonic and for a function involving the ratio of two gamma functions to be logarithmically completely monotonic. From these, some double inequalities are derived for bounding polygamma functions, divided differences of polygamma functions, and the ratio of two gamma functions.
In this paper, we establish various inequalities for some differentiable mappings that are linked with the illustrious Hermite–Hadamard integral inequality for mappings whose derivatives are $s$-$(\alpha , m)$-convex. The generalised integral inequalities contribute better estimates than some already presented. The inequalities are then applied to numerical integration and some special means.
We present a family of radical convolution Banach algebras on intervals (0,a] which are of Sobolev type; that is, they are defined in terms of derivatives. Among other properties, it is shown that all epimorphisms and derivations of such algebras are bounded. Also, we give examples of nontrivial concrete derivations.
We obtain the approximate functional equation for the Rankin–Selberg zeta function in the critical strip and, in particular, on the critical line $\operatorname {Re} s= \frac {1}{2}$.
We study the question whether a Riemann–Stieltjes integral of a positive continuous function with respect to a nonnegative function of bounded variation is positive.
We characterise solutions f,g:ℝ→ℝ of the functional equation f(x+g(x)y)=f(x)f(y) under the assumption that f is continuous. Our considerations refer mainly to a paper by Chudziak [‘Semigroup-valued solutions of the Goła̧b–Schinzel functional equation’, Abh. Math. Semin. Univ. Hambg.76, (2006), 91–98], in which the author studied the same equation assuming that g is continuous.
We consider the convex hull ℬk of the symmetric moment curve Uk(t)=(cos t,sin t,cos 3t,sin 3t,…,cos (2k−1)t,sin (2k−1)t) in ℝ2k, where t ranges over the unit circle 𝕊=ℝ/2πℤ. The curve Uk(t) is locally neighborly: as long as t1,…,tk lie in an open arc of 𝕊 of a certain length ϕk>0 , the convex hull of the points Uk (t1),…,Uk (tk)is a face of ℬk. We characterize the maximum possible length ϕk, proving, in particular, that ϕk >π/2for all k and that the limit of ϕk is π/2as k grows. This allows us to construct centrally symmetric polytopes with a record number of faces.
The main objective of this paper is a study of some new refinements and converses of multidimensional Hilbert-type inequalities with nonconjugate exponents. Such extensions are deduced with the help of some remarkable improvements of the well-known Hölder inequality. First, we obtain refinements and converses of the general multidimensional Hilbert-type inequality in both quotient and difference form. We then apply the results to homogeneous kernels with negative degree of homogeneity. Finally, we consider some particular settings with homogeneous kernels and weighted functions, and compare our results with those in the literature.
We use a change-of-variable formula in the framework of functions of bounded variation to derive an explicit formula for the Fourier transform of the level crossing function of shot noise processes with jumps. We illustrate the result in some examples and give some applications. In particular, it allows us to study the asymptotic behavior of the mean number of level crossings as the intensity of the Poisson point process of the shot noise process goes to infinity.
The purpose of this paper is to study the existence of periodic solutions and the topological structure of the solution set of first-order differential equations involving the distributional Henstock–Kurzweil integral. The distributional Henstock–Kurzweil integral is a general integral, which includes the Lebesgue and Henstock–Kurzweil integrals. The main results extend some previously known results in the literature.
A generalisation of Descartes’ rule of signs to other functions is derived and a bound for the number of positive zeros of a class of integral transforms is deduced from that. A more precise rule of signs is also discussed in the light of these results.