To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study some Hardy-type inequalities involving a general norm in ℝn and an anisotropic distance function to the boundary. The case of the optimality of the constants is also addressed.
Set differential equations are usually formulated in terms of the Hukuhara differential. As a consequence, the theory of set differential equations is perceived as an independent subject, in which all results are proved within the framework of the Hukuhara calculus. We propose to reformulate set differential equations as ordinary differential equations in a Banach space by identifying the convex and compact subsets of ℝd with their support functions. Using this representation, standard existence and uniqueness theorems for ordinary differential equations can be applied to set differential equations. We provide a geometric interpretation of the main result, and demonstrate that our approach overcomes the heavy restrictions that the use of the Hukuhara differential implies for the nature of a solution.
Functions of bounded deformation (BD) arise naturally in the study of fracture and damage in a geometrically linear context. They are related to functions of bounded variation (BV), but are less well understood. We discuss here the relation to BV under additional regularity assumptions, which may require the regular part of the strain to have higher integrability or the jump set to have finite area or the Cantor part to vanish. On the positive side, we prove that BD functions that are piecewise affine on a Caccioppoli partition are in GSBV, and we prove that SBDp functions are approximately continuous -almost everywhere away from the jump set. On the negative side, we construct a function that is BD but not in BV and has distributional strain consisting only of a jump part, and one that has a distributional strain consisting of only a Cantor part.
We introduce a multi-species chemotaxis type system admitting an arbitrarily large number of population species, all of which are attracted versus repelled by a single chemical substance. The production versus destruction rates of the chemotactic substance by the species is described by a probability measure. For such a model, we investigate the variational structures, in particular, we prove the existence of Lyapunov functionals, we establish duality properties as well as a logarithmic Hardy–Littlewood–Sobolev type inequality for the associated free energy. The latter inequality provides the optimal critical value for the conserved total population mass.
We examine dynamical systems which are ‘nonchaotic’ on a big (in the sense of Lebesgue measure) set in each neighbourhood of a fixed point $x_{0}$, that is, the entropy of this system is zero on a set for which $x_{0}$ is a density point. Considerations connected with this family of functions are linked with functions attracting positive entropy at $x_{0}$, that is, each mapping sufficiently close to the function has positive entropy on each neighbourhood of $x_{0}$.
We consider a scale invariant Cassinian metric and a Gromov hyperbolic metric. We discuss a distortion property of the scale invariant Cassinian metric under Möbius maps of a punctured ball onto another punctured ball. We obtain a modulus of continuity of the identity map from a domain equipped with the scale invariant Cassinian metric (or the Gromov hyperbolic metric) onto the same domain equipped with the Euclidean metric. Finally, we establish the quasi-invariance properties of both metrics under quasiconformal maps.
In this paper, we prove some new reverse dynamic inequalities of Renaud- and Bennett-type on time scales. The results are established using the time scales Fubini theorem, the reverse Hölder inequality and a time scales chain rule.
The fractional derivatives include nonlocal information and thus their calculation requires huge storage and computational cost for long time simulations. We present an efficient and high-order accurate numerical formula to speed up the evaluation of the Caputo fractional derivative based on the L2-1σ formula proposed in [A. Alikhanov, J. Comput. Phys., 280 (2015), pp. 424-438], and employing the sum-of-exponentials approximation to the kernel function appeared in the Caputo fractional derivative. Both theoretically and numerically, we prove that while applied to solving time fractional diffusion equations, our scheme not only has unconditional stability and high accuracy but also reduces the storage and computational cost.
We show that, in the two-dimensional case, every objective, isotropic and isochoric energy function that is rank-one convex on GL+(2) is already polyconvex on GL+(2). Thus, we answer in the negative Morrey's conjecture in the subclass of isochoric nonlinear energies, since polyconvexity implies quasi-convexity. Our methods are based on different representation formulae for objective and isotropic functions in general, as well as for isochoric functions in particular. We also state criteria for these convexity conditions in terms of the deviatoric part of the logarithmic strain tensor.
In this paper, we characterize Borel $\unicode[STIX]{x1D70E}$-fields of the set of all fuzzy numbers endowed with different metrics. The main result is that the Borel $\unicode[STIX]{x1D70E}$-fields with respect to all known separable metrics are identical. This Borel field is the Borel $\unicode[STIX]{x1D70E}$-field making all level cut functions of fuzzy mappings from any measurable space to the fuzzy number space measurable with respect to the Hausdorff metric on the cut sets. The relation between the Borel $\unicode[STIX]{x1D70E}$-field with respect to the supremum metric $d_{\infty }$ is also demonstrated. We prove that the Borel field is induced by a separable and complete metric. A global characterization of measurability of fuzzy-valued functions is given via the main result. Applications to fuzzy-valued integrals are given, and an approximation method is presented for integrals of fuzzy-valued functions. Finally, an example is given to illustrate the applications of these results in economics. This example shows that the results in this paper are basic to the theory of fuzzy-valued functions, such as the fuzzy version of Lebesgue-like integrals of fuzzy-valued functions, and are useful in applied fields.
We propose a hybrid spectral element method for fractional two-point boundary value problem (FBVPs) involving both Caputo and Riemann-Liouville (RL) fractional derivatives. We first formulate these FBVPs as a second kind Volterra integral equation (VIEs) with weakly singular kernel, following a similar procedure in [16]. We then design a hybrid spectral element method with generalized Jacobi functions and Legendre polynomials as basis functions. The use of generalized Jacobi functions allow us to deal with the usual singularity of solutions at t = 0. We establish the existence and uniqueness of the numerical solution, and derive a hptype error estimates under L2(I)-norm for the transformed VIEs. Numerical results are provided to show the effectiveness of the proposed methods.
We consider stable and almost stable points of autonomous and nonautonomous discrete dynamical systems defined on the closed unit interval. Our considerations are associated with chaos theory by adding an additional assumption that an entropy of a function at a given point is infinite.
where the supremum is taken over all not identically zero nonnegative positive definite functions. We investigate how large these extremal quantities can be. This problem was originally posed by Yu. Shteinikov and S. Konyagin (for the case $\ell =2$) and is an extension of the classical problem of Wiener. In this note we obtain exact values for the right limits $\overline{\lim }_{\unicode[STIX]{x1D700}\rightarrow 0+}G(k+\unicode[STIX]{x1D700})$ and $\overline{\lim }_{\unicode[STIX]{x1D700}\rightarrow 0+}C(k+\unicode[STIX]{x1D700})$$(k\in \mathbb{N})$ taken over doubly positive functions, and sufficiently close bounds for other values of $\ell$.
Necessary and sufficient conditions to characterise weakly $r$-preinvex functions on an invex set are obtained and used to establish generalisations of the Hermite–Hadamard inequality for such functions.
The Laub–Ilani inequality [‘A subtle inequality’, Amer. Math. Monthly97 (1990), 65–67] states that $x^{x}+y^{y}\geqslant x^{y}+y^{x}$ for nonnegative real numbers $x,y$. We introduce and prove new trigonometric and algebraic-trigonometric inequalities of Laub–Ilani type and propose some conjectural algebraic-trigonometric inequalities of similar forms.
We consider the total curvature of graphs of curves in high-codimension Euclidean space. We introduce the corresponding relaxed energy functional and prove an explicit representation formula. In the case of continuous Cartesian curves, i.e. of graphs cu of continuous functions u on an interval, we show that the relaxed energy is finite if and only if the curve cu has bounded variation and finite total curvature. In this case, moreover, the total curvature does not depend on the Cantor part of the derivative of u. We treat the wider class of graphs of one-dimensional functions of bounded variation, and we prove that the relaxed energy is given by the sum of the length and total curvature of the new curve obtained by closing the holes in cu generated by jumps of u with vertical segments.
A necessary and sufficient condition for a continuous function $g$ to be almost periodic on time scales is the existence of an almost periodic function $f$ on $\mathbb{R}$ such that $f$ is an extension of $g$. Our aim is to study this question for pseudo almost periodic functions. We prove the necessity of the condition for pseudo almost periodic functions. An example is given to show that the sufficiency of the condition does not hold for pseudo almost periodic functions. Nevertheless, the sufficiency is valid for uniformly continuous pseudo almost periodic functions. As applications, we give some results on the connection between the pseudo almost periodic (or almost periodic) solutions of dynamic equations on time scales and of the corresponding differential equations.
The computational work and storage of numerically solving the time fractional PDEs are generally huge for the traditional direct methods since they require total memory and work, where NT and NS represent the total number of time steps and grid points in space, respectively. To overcome this difficulty, we present an efficient algorithm for the evaluation of the Caputo fractional derivative of order α∈(0,1). The algorithm is based on an efficient sum-of-exponentials (SOE) approximation for the kernel t–1–α on the interval [Δt, T] with a uniform absolute error ε. We give the theoretical analysis to show that the number of exponentials Nexp needed is of order for T≫1 or for TH1 for fixed accuracy ε. The resulting algorithm requires only storage and work when numerically solving the time fractional PDEs. Furthermore, we also give the stability and error analysis of the new scheme, and present several numerical examples to demonstrate the performance of our scheme.
An iteration technique for characterizing boundedness of certain types of multilinear operators is presented, reducing the problem to a corresponding linear-operator case. The method gives a simple proof of a characterization of validity of the weighted bilinear Hardy inequality
for all non-negative f, g on (a, b), for 1 < p1, p2, q < ∞. More equivalent characterizing conditions are presented.
The same technique is applied to various further problems, in particular those involving multilinear integral operators of Hardy type.
In this paper, we first apply cosine radial basis function neural networks to solve the fractional differential equations with initial value problems or boundary value problems. In the examples, we successfully obtained the numerical solutions for the fractional Riccati equations and fractional Langevin equations. The computer graphics and numerical solutions show that this method is very effective.