We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give a new necessary and sufficient condition for an iterated function system to satisfy the deterministic chaos game. As a consequence, we give a new example of an iterated function system which satisfies the deterministic chaos game.
Let be an open set in ℝn and suppose that is a Sobolev homeomorphism. We study the regularity of f–1 under the Lp-integrability assumption on the distortion function Kf. First, if is the unit ball and p > n – 1, then the optimal local modulus of continuity of f–1 is attained by a radially symmetric mapping. We show that this is not the case when p ⩽ n – 1 and n ⩾ 3, and answer a question raised by S. Hencl and P. Koskela. Second, we obtain the optimal integrability results for ∣Df–1∣ in terms of the Lp-integrability assumptions of Kf.
We characterize, in the context of rearrangement invariant spaces, the optimal range space for a class of monotone operators related to the Hardy operator. The connection between the optimal range and the optimal domain for these operators is carefully analysed.
A set is shy or Haar null (in the sense of Christensen) if there exists a Borel set and a Borel probability measure μ on C[0, 1] such that and for all f ∈ C[0, 1]. The complement of a shy set is called a prevalent set. We say that a set is Haar ambivalent if it is neither shy nor prevalent.
The main goal of the paper is to answer the following question: what can we say about the topological properties of the level sets of the prevalent/non-shy many f ∈ C[0, 1]?
The classical Bruckner–Garg theorem characterizes the level sets of the generic (in the sense of Baire category) f ∈ C[0, 1] from the topological point of view. We prove that the functions f ∈ C[0, 1] for which the same characterization holds form a Haar ambivalent set.
In an earlier paper, Balka et al. proved that the functions f ∈ C[0, 1] for which positively many level sets with respect to the Lebesgue measure λ are singletons form a non-shy set in C[0, 1]. The above result yields that this set is actually Haar ambivalent. Now we prove that the functions f ∈ C[0, 1] for which positively many level sets with respect to the occupation measure λ ◦ f–1 are not perfect form a Haar ambivalent set in C[0, 1].
We show that for the prevalent f ∈ C[0, 1] for the generic y ∈ f([0, 1]) the level set f–1(y) is perfect. Finally, we answer a question of Darji and White by showing that the set of functions f ∈ C[0, 1] for which there exists a perfect set Pf ⊂ [0, 1] such that fʹ(x) = ∞ for all x ∈ Pf is Haar ambivalent.
High-dimensional two-sided space fractional diffusion equations with variable diffusion coefficients are discussed. The problems can be solved by an implicit finite difference scheme that is proven to be uniquely solvable, unconditionally stable and first-order convergent in the infinity norm. A nonsingular multilevel circulant pre-conditoner is proposed to accelerate the convergence rate of the Krylov subspace linear system solver efficiently. The preconditoned matrix for fast convergence is a sum of the identity matrix, a matrix with small norm, and a matrix with low rank under certain conditions. Moreover, the preconditioner is practical, with an O(N logN) operation cost and O(N) memory requirement. Illustrative numerical examples are also presented.
The bivariate series defines a partial theta function. For fixed q (∣q∣ < 1), θ(q, ·) is an entire function. For q ∈ (–1, 0) the function θ(q, ·) has infinitely many negative and infinitely many positive real zeros. There exists a sequence of values of q tending to –1+ such that has a double real zero (the rest of its real zeros being simple). For k odd (respectively, k even) has a local minimum (respectively, maximum) at , and is the rightmost of the real negative zeros of (respectively, for k sufficiently large is the second from the left of the real negative zeros of ). For k sufficiently large one has . One has and .
A finite difference method which is second-order accurate in time and in space is proposed for two-dimensional fractional percolation equations. Using the Fourier transform, a general approximation for the mixed fractional derivatives is analyzed. An approach based on the classical Crank-Nicolson scheme combined with the Richardson extrapolation is used to obtain temporally and spatially second-order accurate numerical estimates. Consistency, stability and convergence of the method are established. Numerical experiments illustrating the effectiveness of the theoretical analysis are provided.
In this paper, the (G'/G)-expansion method is suggested to establish new exact solutions for fractional differential-difference equations in the sense of modified Riemann-Liouville derivative. The fractional complex transform is proposed to convert a fractional partial differential difference equation into its differential difference equation of integer order. With the aid of symbolic computation, we choose nonlinear lattice equations to illustrate the validity and advantages of the algorithm. It is shown that the proposed algorithm is effective and can be used for many other nonlinear lattice equations in mathematical physics and applied mathematics.
is true for any vectors $x,y$ and a projection $P:H\rightarrow H$. Applications to norm and numerical radius inequalities of two bounded operators are given.
We present a parallel algorithm to calculate a numerical approximation of a single, isolated root ${\it\alpha}$ of a function $f:\mathbb{R}\rightarrow \mathbb{R}$ which is sufficiently regular at and around ${\it\alpha}$. The algorithm is derivative free and performs one function evaluation on each processor per iteration. It requires at least three processors and can be scaled up to any number of these. The order with which the generated sequence of approximants converges to ${\it\alpha}$ is equal to $(n+\sqrt{n^{2}+4})/2$ for $n+1$ processors with $n\geqslant 2$. This assumes that particular combinations of the derivatives of $f$ do not vanish at ${\it\alpha}$.
We prove a subconvexity bound for the central value $L(\frac{1}{2},{\it\chi})$ of a Dirichlet $L$-function of a character ${\it\chi}$ to a prime power modulus $q=p^{n}$ of the form $L(\frac{1}{2},{\it\chi})\ll p^{r}q^{{\it\theta}+{\it\epsilon}}$ with a fixed $r$ and ${\it\theta}\approx 0.1645<\frac{1}{6}$, breaking the long-standing Weyl exponent barrier. In fact, we develop a general new theory of estimation of short exponential sums involving $p$-adically analytic phases, which can be naturally seen as a $p$-adic analogue of the method of exponent pairs. This new method is presented in a ready-to-use form and applies to a wide class of well-behaved phases including many that arise from a stationary phase analysis of hyper-Kloosterman and other complete exponential sums.
We give an L2 x L2 → L2 convolution estimate for singular measures supported on transversal hypersurfaces in ℝn, which improves earlier results of Bejenaru et al. as well as Bejenaru and Herr. The quantities arising are relevant to the study of the validity of bilinear estimates for dispersive partial differential equations. We also prove a class of global, nonlinear Brascamp–Lieb inequalities with explicit constants in the same spirit.
The n-dimensional cyclic system of second-order nonlinear differential equations
is analysed in the framework of regular variation. Under the assumption that αi and βi are positive constants such that α1 … αn > β1 … βn and pi and qi are regularly varying functions, it is shown that the situation in which the system possesses decreasing regularly varying solutions of negative indices can be completely characterized, and moreover that the asymptotic behaviour of such solutions is governed by a unique formula describing their order of decay precisely. Examples are presented to demonstrate that the main results for the system can be applied effectively to some classes of partial differential equations with radial symmetry to provide new accurate information about the existence and the asymptotic behaviour of their radial positive strongly decreasing solutions.
We prove that if a uniformly bounded (or equidistantly uniformly bounded) Nemytskij operator maps the space of functions of bounded ${\it\varphi}$-variation with weight function in the sense of Riesz into another space of that type (with the same weight function) and its generator is continuous with respect to the second variable, then this generator is affine in the function variable (traditionally, in the second variable).
The main goal of this paper is to give the answer to one of the main problems of the theory of nonautonomous superposition operators acting in the space of functions of bounded variation in the sense of Jordan. Namely, we prove that if the superposition operator maps the space $BV[0,1]$ into itself, then it is automatically locally bounded, provided its generator is a locally bounded function.
We prove that, for an interval X ⊆ ℝ and a normed space Z, diagonals of separately absolutely continuous mappings f : X2 → Z are exactly mappings g : X → Z, which are the sums of absolutely convergent series of continuous functions.
Exact upper and lower bounds on the difference between the arithmetic and geometric means are obtained. The inequalities providing these bounds may be viewed, respectively, as a reverse Jensen inequality and an improvement of the direct Jensen inequality, in the case when the convex function is the exponential.
In the present paper, a coupled algorithm refining recursively the Hermite–Hadamard inequality on a simplex is investigated. Our approach allows us to express the integral mean value $M_{f}$ of a convex function $f$ on a simplex as both the limit of sequences and sum of series involving iterative lower and upper bounds of $M_{f}$. Two examples of interest are discussed.
In this article, we investigate the pointwise behaviors of functions on the Heisenberg group. We find wavelet characterizations for the global and local Hölder exponents. Then we prove some a priori upper bounds for the multifractal spectrum of all functions in a given Hölder, Sobolev, or Besov space. These upper bounds turn out to be optimal, since in all cases they are reached by typical functions in the corresponding functional spaces. We also explain how to adapt our proof to extend our results to Carnot groups.