We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A Chebyshev pseudo-spectral method for solving numerically linear and nonlinear fractional-order integro-differential equations of Volterra type is considered. The fractional derivative is described in the Caputo sense. The suggested method reduces these types of equations to the solution of linear or nonlinear algebraic equations. Special attention is given to study the convergence of the proposed method. Finally, some numerical examples are provided to show that this method is computationally efficient, and a comparison is made with existing results.
The quasilinearity of certain composite functionals defined on convex cones in linear spaces is investigated. Applications in refining the Jensen, Hölder, Minkowski and Schwarz inequalities are given.
The topic of the present paper is a generalized St Petersburg game in which the distribution of the payoff X is given by P(X =
sr(k-1)/α) = pqk-1,
k = 1, 2,…, where p + q = 1, s = 1 / p,
r = 1 / q, and 0 < α ≤ 1. For the case in which α = 1, we extend Feller's classical weak law and Martin-Löf's theorem on convergence in distribution along the 2n-subsequence. The analog for 0 < α < 1 turns out to converge in distribution to an asymmetric stable law with index α. Finally, some limit theorems for polynomial and geometric size total gains, as well as for extremes, are given.
A concept of synchronicity associated with convex functions in linear spaces and a Chebyshev type inequality are given. Applications for norms, semi-inner products and convex functions of several real variables are also given.
According to the classical Borel lemma, any positive nondecreasing continuous function T satisfiesT(r+1/T(r))≤2T(r) outside a possible exceptional set of finite linear measure. This lemma plays an important role in the theory of entire and meromorphic functions, where the increasing function T is either the logarithm of the maximum modulus function, or the Nevanlinna characteristic. As a result, exceptional sets appear throughout Nevanlinna theory, in particular in Nevanlinna’s second main theorem. In this paper, we consider generalizations of Borel’s lemma. Conversely, we consider ways in which certain inequalities can be modified so as to remove exceptional sets. All results discussed are presented from the point of view of real analysis.
Let β∈(1,2) be a Pisot number and let Hβ denote Garsia’s entropy for the Bernoulli convolution associated with β. Garsia, in 1963, showed that Hβ<1 for any Pisot β. For the Pisot numbers which satisfy xm=xm−1+xm−2+⋯+x+1 (with m≥2), Garsia’s entropy has been evaluated with high precision by Alexander and Zagier for m=2 and later by Grabner, Kirschenhofer and Tichy for m≥3, and it proves to be close to 1. No other numerical values for Hβ are known. In the present paper we show that Hβ>0.81 for all Pisot β, and improve this lower bound for certain ranges of β. Our method is computational in nature.
We consider families of general two-point quadrature formulae, using the extension of Montgomery’s identity via Taylor’s formula. The formulae obtained are used to present a number of inequalities for functions whose derivatives are from Lp spaces and Bullen-type inequalities.
Some new results related to Jensen’s celebrated inequality for convex functions defined on convex sets in linear spaces are given. Applications for norm inequalities in normed linear spaces and f-divergences in information theory are provided as well.
The inverse stochastic dominance of degree r is a stochastic order of interest in several branches of economics. We discuss it in depth, the central point being the characterization in terms of the weak r-majorization of the vectors of expected order statistics. The weak r-majorization (a notion introduced in the paper) is a natural extension of the classical (reverse) weak majorization of Hardy, Littlewood and Pòlya. This work also shows the equivalence between the continuous majorization (of higher order) and the discrete r-majorization. In particular, our results make it clear that the cases r = 1, 2 differ substantially from those with r ≥ 3, a fact observed earlier by Muliere and Scarsini (1989), among other authors. Motivated by this fact, we introduce new stochastic orderings, as well as new social inequality indices to compare the distribution of the wealth in two populations, which could be considered as natural extensions of the first two dominance rules and the S-Gini indices, respectively.
Zolotarev (1961) proved a duality result that relates stable densities with different indices. In this paper we show how Zolotarev's duality leads to some interesting results on fractional diffusion. Fractional diffusion equations employ fractional derivatives in place of the usual integer-order derivatives. They govern scaling limits of random walk models, with power-law jumps leading to fractional derivatives in space, and power-law waiting times between the jumps leading to fractional derivatives in time. The limit process is a stable Lévy motion that models the jumps, subordinated to an inverse stable process that models the waiting times. Using duality, we relate the density of a spectrally negative stable process with index 1<α<2 to the density of the hitting time of a stable subordinator with index 1/α, and thereby unify some recent results in the literature. These results provide a concrete interpretation of Zolotarev's duality in terms of the fractional diffusion model. They also illuminate a current controversy in hydrology, regarding the appropriate use of space- and time-fractional derivatives to model contaminant transport in river flows.
We introduce a class of stock models that interpolates between exponential Lévy models based on Brownian subordination and certain stochastic volatility models with Lévy-driven volatility, such as the Barndorff-Nielsen–Shephard model. The driving process in our model is a Brownian motion subordinated to a business time which is obtained by convolution of a Lévy subordinator with a deterministic kernel. We motivate several choices of the kernel that lead to volatility clusters while maintaining the sudden extreme movements of the stock. Moreover, we discuss some statistical and path properties of the models, prove absence of arbitrage and incompleteness, and explain how to price vanilla options by simulation and fast Fourier transform methods.
We discuss here the boundedness of the fractional integral operator Iα and its generalized version on generalized nonhomogeneous Morrey spaces. To prove the boundedness of Iα, we employ the boundedness of the so-called maximal fractional integral operator Ia,κ*. In addition, we prove an Olsen-type inequality, which is analogous to that in the case of homogeneous type.
We give a characterization of pairs of weights for the validity of weighted inequalities involving certain generalized geometric mean operators generated by some Volterra integral operators, which include the Hardy averaging operator and the Riemann–Liouville integral operators. The estimations of the constants are also discussed. Our results generalize the work done by J. A. Cochran, C.-S. Lee, H. P. Heinig, B. Opic, P. Gurka, and L. Pick.
In this paper, a new approach is proposed to investigate Blackwell-type renewal theorems for weighted renewal functions systematically according to which of the tails of weighted renewal constants or the underlying distribution is asymptotically heavier. Some classical results are improved considerably.
In two recent papers a global upper bound is derived for Jensen’s inequality for weighted finite sums. In this paper we generalize this result on positive normalized functionals.
Sharp bounds for the deviation of a real-valued function f defined on a compact interval [a,b] to the chord generated by its end points (a,f(a)) and (b,f(b)) under various assumptions for f and f′, including absolute continuity, convexity, bounded variation, and monotonicity, are given. Some applications for weighted means and f-divergence measures in information theory are also provided.
Some new Gronwall–Ou-Iang type integral inequalities in two independent variables are established. We also present some of its application to the study of certain classes of integral and differential equations.
A Riesz space-fractional reaction–dispersion equation (RSFRDE) is obtained from the classical reaction–dispersion equation (RDE) by replacing the second-order space derivative with a Riesz derivative of order β∈(1,2]. In this paper, using Laplace and Fourier transforms, we obtain the fundamental solution for a RSFRDE. We propose an explicit finite-difference approximation for a RSFRDE in a bounded spatial domain, and analyse its stability and convergence. Some numerical examples are presented.
A new sharp L2 inequality of Ostrowski type is established, which provides some other interesting results as special cases. Applications in numerical integration are also given.
We give here some extensions of inequalities of Popoviciu and Rado. The idea is to use an inequality [C. P. Niculescu and L. E. Persson, Convex functions. Basic theory and applications (Universitaria Press, Craiova, 2003), Page 4] which gives an approximation of the arithmetic mean of n values of a given convex function in terms of the value at the arithmetic mean of the arguments. We also give more general forms of this inequality by replacing the arithmetic mean with others. Finally we use these inequalities to establish similar inequalities of Popoviciu and Rado type.