To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Two index laws for fractional integrals and derivatives, which have been extensively studied by E. R. Love, are shown to be special cases of an index law for general powers of certain differential operators, by means of the theory developed in a previous paper. Discussion of the two index laws, which are rather different in appearance, can thus be unified.
Let ((x)) = x −⌊x⌋−1/2 be the swatooth function. If a, b, c and e are positive integeral, then the integral or ((ax)) ((bx)) ((cx)) ((ex)) over the unit interval involves Apolstol's generalized Dedekind sums. By expressing this integral as a lattice-point sum we obtain an elementary method for its evaluation. We also give an elementary proof of the reciprocity law for the third generalized Dedekind sum.
If two functions of a real variable are integrable over two intervals, say of t, τ, respectively, then the product of the two functions should be integrable over the rectangular product of the two intervals of t and τ. For the Lebesgue integral, definable using non-negative functions alone, the proof is easy. For non-absolute integrals such as the Perron, Çesàro-Perron, and Marcinkiewicz-Zygmund integrals we have difficulties since the functions cannot be assumed non-negative. But the present paper gives a proof.
A trigonometric series has “small gaps” if the difference of the orders of successive terms is bounded below by a number exceeding one. Wiener, Ingham and others have shown that if a function represented by such a series exhibits a certain behavior on a large enough subinterval I, this will have consequences for the behavior of the function on the whole circle group. Here we show that the assumption that f is in any one of various classes of functions of generalized bounded variation on I implies that the appropriate order condition holds for the magnitude of the Fourier coefficients. A generalized bounded variation condition coupled with a Zygmundtype condition on the modulus of continuity of the restriction of the function to I implies absolute convergence of the Fourier series.
A classical theorem states that any open set on the real line is a countable union of disjoint open invervals. Here the numerical content of this theorem is investigated with the methods of constructive topology.
We say that a function has locally small Riemann sums on an interval if for each point x in the interval, and for each positive number ε, all sufficiently fine partitions of intervals lying in neighborhood of x but not containing x have Riemann sums of absolute value less than ε. The main result is then as the title states. We use the generalized Riemann approach to Perron integration, assuming that functions are measurable only to insure that conditions involving the positive and negative parts of the functions are satisfied.
We introduce the notion of functions of bounded proximal variation and the notion of orderly connected topology on the real line. Using these notions, we define in a novel way an integral of Perron type, including virtually all the known integrals of Perron and Denjoy types and admitting mean value theorems and integration by parts and the analog of Marcinkiewicz theorem for the ordinary Perron integral.
The special Denjoy-Bochner integral (the D*B-integral) which are generalisations of Lebesgue-Bochner integral are discussed in [7, 6, 5]. Just as the concept of numerical almost periodicity was extended by Burkill [3] to numerically valued D*- or D-integrable function, we extend the concept of almost periodicity for Banach valued function to Banach valued D*B-integrable function. For this purpose we introduce as in [3] a distance in the space of all D*B-integrable functions with respect to which the D*B-almost periodicity is defined. It is shown that the D*B-almost periodicity shares many of the known properties of the almost periodic Banach valued function [1, 4].
Various continuity conditions (in norm, in measure, weakly etc.) for the nonlinear superposition operator F x(s) = f(s, x(s)) between spaces of measurable functions are established in terms of the generating function f = f(s, u). In particular, a simple proof is given for the fact that, if F is continuous in measure, then f may be replaced by a function f which generates the same superposition operator F and satisfies the Carathéodory conditions. Moreover, it is shown that integral functional associated with the function f are proved.
Let X1, X2, …, XN be Banach spaces and ψ a continuous convex function with some appropriate conditions on a certain convex set in RN−1. Let (X1⊕X2⊕…⊕XN)Ψ be the direct sum of X1, X2, …, XN equipped with the norm associated with Ψ. We characterize the strict, uniform, and locally uniform convexity of (X1 ⊕ X2 ⊕ … ⊕ XN)Ψ; by means of the convex function Ψ. As an application these convexities are characterized for the ℓp, q-sum (X1 ⊕ X2 ⊕ … ⊕ XN)p, q (1 < q ≤ p ≤ ∈, q < ∞), which includes the well-known facts for the ℓp-sum (X1 ⊕ X2 ⊕ … ⊕ XN)p in the case p = q.
In recent papers, Russell introduced the notions of functions of bounded kth variation (BVk functions) and the RSk integral. Das and Lahiri enriched Russell's works along with a convergence formula of RSk integrals depending on the convergence of integrands. In this paper a convergence theorem analogous to Arzela's dominated convergence theorem has been presented. An investigation to the convergence in kth variation has been made leading to some convergence theorems of RSk integrals depending on the convergence of integrators.
Two-sided inequalties for the ratio of modified Bessel functions of first kind are given, which provide sharper upper and lower bounds than had been known earlier. Wronskian type inequalities for Bessel functions are proved, and in the sequel alternative proofs of Turan-type inequalities for Bessel and modified Bessel functions are also discussed. These then lead to a two-sided inequality for Bessel functions. Also incorporated in the discussion is an inequality for the ratio of two Bessel functions for 0 < x < 1. Verifications of these inequalities are pointed out numerically.
We prove the higher integrability of nonnegative decreasing functions, verifying a reverse inequality, and we calculate the optimal integrability exponent for these functions.
We measure the separation of the zeros of the polynomial f(x) = by δ(f) = mini(ai+1 − ai). We establish a bound for the amount by which the ratio δ(f′ − kf)/δ(f) exceeds 1.
We present a systematic and self-contained exposition of the generalized Riemann integral in a locally compact Hausdorff space, and we show that it is equivalent to the Perron and variational integrals. We also give a necessary and sufficient condition for its equivalence to the Lebesgue integral with respect to a suitably chosen measure.
We investigate the location and separation of zeros of certain three-term linear combination of translates of polynomials. In particular, we find an interval of the form I = [−1, 1 + h], h > 0 such that for a polynomial f, all of whose zeros are real, and λ ∈ I, all zeros of f (x + 2ic) + 2λf (x) + f (x – 2ic) are also real.
In this paper we prove that if a Cantor set has ratios of dissection bounded away from zero, then there is a natural number N, such that its N-fold sum is an interval. Moreover, for each element z of this interval, we explicitly construct the N elements of C whose sum yields z. We also extend a result of Mendes and Oliveria showing that when s is irrational is an interval if and only if a /(1−2a) as/(1−2as) ≥ 1.
In this paper, we investigate Volterra spaces and relevant topological properties. New characterizations of weakly Volterra spaces are provided. An analogy of the Banach category theorem in terms of Volterra properties is obtained. It is shown that every weakly Volterra homogeneous space is Volterra, and there are metrizable Baire spaces whose hyperspaces of nonempty compact subsets endowed with the Vietoris topology are not weakly Volterra.