To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We first establish a family of sharp Caffarelli–Kohn–Nirenberg type inequalities (shortly, sharp CKN inequalities) on the Euclidean spaces and then extend them to the setting of Cartan–Hadamard manifolds with the same best constant. The quantitative version of these inequalities also is proved by adding a non-negative remainder term in terms of the sectional curvature of manifolds. We next prove several rigidity results for complete Riemannian manifolds supporting the Caffarelli–Kohn–Nirenberg type inequalities with the same sharp constant as in the Euclidean space of the same dimension. Our results illustrate the influence of curvature to the sharp CKN inequalities on the Riemannian manifolds. They extend recent results of Kristály (J. Math. Pures Appl. 119 (2018), 326–346) to a larger class of the sharp CKN inequalities.
Without resorting to complex numbers or any advanced topological arguments, we show that any real polynomial of degree greater than two always has a real quadratic polynomial factor, which is equivalent to the fundamental theorem of algebra. The proof uses interlacing of bivariate polynomials similar to Gauss’s first proof of the fundamental theorem of algebra using complex numbers, but in a different context of division residues of strictly real polynomials. This shows the sufficiency of basic real analysis as the minimal platform to prove the fundamental theorem of algebra.
By developing a Green's function representation for the solution of the boundary value problem we study existence, uniqueness, and qualitative properties (e.g., positivity or monotonicity) of solutions to these problems. We apply our methods to fractional order differential equations. We also demonstrate an application of our methodology both to convolution equations with nonlocal boundary conditions as well as those with a nonlocal term in the convolution equation itself.
We study a class of delta-like perturbations of the Laplacian on the half-line, characterized by Robin boundary conditions at the origin. Using the formalism of nonstandard analysis, we derive a simple connection with a suitable family of Schrödinger operators with potentials of very large (infinite) magnitude and very short (infinitesimal) range. As a consequence, we also derive a similar result for point interactions in the Euclidean space $\mathbb {R}^3$, in the case of radial potentials. Moreover, we discuss explicitly our results in the case of potentials that are linear in a neighborhood of the origin.
We obtain a criterion for an analytic subset of a Euclidean space to contain points of differentiability of a typical Lipschitz function: namely, that it cannot be covered by countably many sets, each of which is closed and purely unrectifiable (has a zero-length intersection with every $C^1$ curve). Surprisingly, we establish that any set failing this criterion witnesses the opposite extreme of typical behaviour: in any such coverable set, a typical Lipschitz function is everywhere severely non-differentiable.
We show that a computable function $f:\mathbb R\rightarrow \mathbb R$ has Luzin’s property (N) if and only if it reflects $\Pi ^1_1$-randomness, if and only if it reflects $\Delta ^1_1({\mathcal {O}})$-randomness, and if and only if it reflects ${\mathcal {O}}$-Kurtz randomness, but reflecting Martin–Löf randomness or weak-2-randomness does not suffice. Here a function f is said to reflect a randomness notion R if whenever $f(x)$ is R-random, then x is R-random as well. If additionally f is known to have bounded variation, then we show f has Luzin’s (N) if and only if it reflects weak-2-randomness, and if and only if it reflects $\emptyset '$-Kurtz randomness. This links classical real analysis with algorithmic randomness.
Skolem (1956) studied the germs at infinity of the smallest class of real valued functions on the positive real line containing the constant $1$, the identity function ${\mathbf {x}}$, and such that whenever f and g are in the set, $f+g,fg$ and $f^g$ are in the set. This set of germs is well ordered and Skolem conjectured that its order type is epsilon-zero. Van den Dries and Levitz (1984) computed the order type of the fragment below $2^{2^{\mathbf {x}}}$. Here we prove that the set of asymptotic classes within any Archimedean class of Skolem functions has order type $\omega $. As a consequence we obtain, for each positive integer n, an upper bound for the fragment below $2^{n^{\mathbf {x}}}$. We deduce an epsilon-zero upper bound for the fragment below $2^{{\mathbf {x}}^{\mathbf {x}}}$, improving the previous epsilon-omega bound by Levitz (1978). A novel feature of our approach is the use of Conway’s surreal number for asymptotic calculations.
This work focuses on the ongoing research of lineability (the search for large linear structures within certain non-linear sets) in non-Archimedean frameworks. Among several other results, we show that there exist large linear structures inside each of the following sets: (i) functions with a fixed closed subset of continuity, (ii) all continuous functions that are not Darboux continuous (or vice versa), (iii) all functions whose Dieudonné integral does not behave as an antiderivative, and (iv) functions with finite range and having antiderivative.
We prove the Decomposability Conjecture for functions of Baire class $2$ from a Polish space to a separable metrizable space. This partially answers an important open problem in descriptive set theory.
We provide a finite basis for the class of Borel functions that are not in the first Baire class, as well as the class of Borel functions that are not $\sigma $-continuous with closed witnesses.
Yuval Peres and Perla Sousi showed that the mixing times and average mixing times of reversible Markov chains on finite state spaces are equal up to some universal multiplicative constant. We use tools from nonstandard analysis to extend this result to reversible Markov chains on compact state spaces that satisfy the strong Feller property.
The article is devoted to Hardy type inequalities on closed manifolds. By means of various weighted Ricci curvatures, we establish several sharp Hardy type inequalities on closed weighted Riemannian manifolds. Our results complement in several aspects those obtained recently in the non-compact Riemannian setting.
In this paper, we prove contact Poincaré and Sobolev inequalities in Heisenberg groups $\mathbb{H}^{n}$, where the word ‘contact’ is meant to stress that de Rham’s exterior differential is replaced by the exterior differential of the so-called Rumin complex $(E_{0}^{\bullet },d_{c})$, which recovers the scale invariance under the group dilations associated with the stratification of the Lie algebra of $\mathbb{H}^{n}$. In addition, we construct smoothing operators for differential forms on sub-Riemannian contact manifolds with bounded geometry, which act trivially on cohomology. For instance, this allows us to replace a closed form, up to adding a controlled exact form, with a much more regular differential form.
We discuss an alternative approach to Fréchet derivatives on Banach spaces inspired by a characterisation of derivatives due to Carathéodory. The approach allows many questions of differentiability to be reduced to questions of continuity. We demonstrate how that simplifies the theory of differentiation, including the rules of differentiation and the Schwarz lemma on the symmetry of second-order derivatives. We also provide a short proof of the differentiable dependence of fixed points in the Banach fixed point theorem.
Barnard and Steinerberger [‘Three convolution inequalities on the real line with connections to additive combinatorics’, Preprint, 2019,arXiv:1903.08731] established the autocorrelation inequality
where the constant $0.411$ cannot be replaced by $0.37$. In addition to being interesting and important in their own right, inequalities such as these have applications in additive combinatorics. We show that for $f$ to be extremal for this inequality, we must have
Our central technique for deriving this result is local perturbation of $f$ to increase the value of the autocorrelation, while leaving $||f||_{L^{1}}$ unchanged. These perturbation methods can be extended to examine a more general notion of autocorrelation. Let $d,n\in \mathbb{Z}^{+}$, $f\in L^{1}$, $A$ be a $d\times n$ matrix with real entries and columns $a_{i}$ for $1\leq i\leq n$ and $C$ be a constant. For a broad class of matrices $A$, we prove necessary conditions for $f$ to extremise autocorrelation inequalities of the form
We completely characterize the validity of the inequality $\| u \|_{Y(\mathbb R)} \leq C \| \nabla^{m} u \|_{X(\mathbb R)}$, where X and Y are rearrangement-invariant spaces, by reducing it to a considerably simpler one-dimensional inequality. Furthermore, we fully describe the optimal rearrangement-invariant space on either side of the inequality when the space on the other side is fixed. We also solve the same problem within the environment in which the competing spaces are Orlicz spaces. A variety of examples involving customary function spaces suitable for applications is also provided.
We present some inequalities for the mappings defined by Dragomir [‘Two mappings in connection to Hadamard’s inequalities’, J. Math. Anal. Appl.167 (1992), 49–56]. We analyse known inequalities connected with these mappings using a recently developed method connected with stochastic orderings and Stieltjes integrals. We show that some of these results are optimal and others may be substantially improved.
We establish inequalities of Jensen’s and Slater’s type in the general setting of a Hermitian unital Banach $\ast$-algebra, analytic convex functions and positive normalised linear functionals.
The range of a trigonometric polynomial with complex coefficients can be interpreted as the image of the unit circle under a Laurent polynomial. We show that this range is contained in a real algebraic subset of the complex plane. Although the containment may be proper, the difference between the two sets is finite, except for polynomials with a certain symmetry.
The main result of this note implies that any function from the product of several vector spaces to a vector space can be uniquely decomposed into the sum of mutually orthogonal functions that are odd in some of the arguments and even in the other arguments. Probabilistic notions and facts are employed to simplify statements and proofs.