We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate the continuity and differentiability of the Hardy constant with respect to perturbations of the domain in the case where the problem involves the distance from a boundary submanifold. We also investigate the case where only the submanifold is deformed.
In this paper we consider the minimization of a novel class of fractional linear growth functionals involving the Riesz fractional gradient. These functionals lack the coercivity properties in the fractional Sobolev spaces needed to apply the direct method. We therefore utilize the recently introduced spaces of bounded fractional variation and study the extension of the linear growth functional to these spaces through relaxation with respect to the weak* convergence. Our main result establishes an explicit representation for this relaxation, which includes an integral term accounting for the singular part of the fractional variation and features the quasiconvex envelope of the integrand. The role of quasiconvexity in this fractional framework is explained by a technique to switch between the fractional and classical settings. We complement the relaxation result with an existence theory for minimizers of the extended functional.
Currently the two popular ways to practice Robinson’s nonstandard analysis are the model-theoretic approach and the axiomatic/syntactic approach. It is sometimes claimed that the internal axiomatic approach is unable to handle constructions relying on external sets. We show that internal frameworks provide successful accounts of nonstandard hulls and Loeb measures. The basic fact this work relies on is that the ultrapower of the standard universe by a standard ultrafilter is naturally isomorphic to a subuniverse of the internal universe.
where $\alpha>n$ and $\beta \in (0,1)$. In this paper, we focus on the regularity and the blow-up set of mild solutions to (0.1). First, we establish the Strichartz-type estimates for the homogeneous term $R_{\alpha ,\beta }(\varphi )$ and inhomogeneous term $G_{\alpha ,\beta }(g)$, respectively. Second, we obtain some space–time estimates for $G_{\alpha ,\beta }(g).$ Based on these estimates, we prove that the continuity of $R_{\alpha ,\beta }(\varphi )(t,x)$ and the Hölder continuity of $G_{\alpha ,\beta }(g)(t,x)$ on $\mathbb {R}^{1+n}_+,$ which implies a Moser–Trudinger-type estimate for $G_{\alpha ,\beta }.$ Then, for a newly introduced $L^{q}_{t}L^p_{x}$-capacity related to the space–time fractional dissipative operator $\partial ^{\beta }_{t}+(-\Delta )^{\alpha /2},$ we perform the geometric-measure-theoretic analysis and establish its basic properties. Especially, we estimate the capacity of fractional parabolic balls in $\mathbb {R}^{1+n}_+$ by using the Strichartz estimates and the Moser–Trudinger-type estimate for $G_{\alpha ,\beta }.$ A strong-type estimate of the $L^{q}_{t}L^p_{x}$-capacity and an embedding of Lorentz spaces are also derived. Based on these results, especially the Strichartz-type estimates and the $L^{q}_{t}L^p_{x}$-capacity of fractional parabolic balls, we deduce the size, i.e., the Hausdorff dimension, of the blow-up set of solutions to (0.1).
We introduce a notion of barycenter of a probability measure related to the symmetric mean of a collection of non-negative real numbers. Our definition is inspired by the work of Halász and Székely, who in 1976 proved a law of large numbers for symmetric means. We study the analytic properties of this Halász–Székely barycenter. We establish fundamental inequalities that relate the symmetric mean of a list of non-negative real numbers with the barycenter of the measure uniformly supported on these points. As consequence, we go on to establish an ergodic theorem stating that the symmetric means of a sequence of dynamical observations converge to the Halász–Székely barycenter of the corresponding distribution.
The $q$-coloured Delannoy numbers $D_{n,k}(q)$ count the number of lattice paths from $(0,\,0)$ to $(n,\,k)$ using steps $(0,\,1)$, $(1,\,0)$ and $(1,\,1)$, among which the $(1,\,1)$ steps are coloured with $q$ colours. The focus of this paper is to study some analytical properties of the polynomial matrix $D(q)=[d_{n,k}(q)]_{n,k\geq 0}=[D_{n-k,k}(q)]_{n,k\geq 0}$, such as the strong $q$-log-concavity of polynomial sequences located in a ray or a transversal line of $D(q)$ and the $q$-total positivity of $D(q)$. We show that the zeros of all row sums $R_n(q)=\sum \nolimits _{k=0}^{n}d_{n,k}(q)$ are in $(-\infty,\, -1)$ and are dense in the corresponding semi-closed interval. We also prove that the zeros of all antidiagonal sums $A_n(q)=\sum \nolimits _{k=0}^{\lfloor n/2 \rfloor }d_{n-k,k}(q)$ are in the interval $(-\infty,\, -1]$ and are dense there.
We prove that any continuous function can be locally approximated at a fixed point
$x_{0}$
by an uncountable family resistant to disruptions by the family of continuous functions for which
$x_{0}$
is a fixed point. In that context, we also consider the property of quasicontinuity.
In this paper, by the introduction of several parameters, we construct a new kernel function which is defined in the whole plane and includes some classical kernel functions. Estimating the weight functions with the techniques of real analysis, we establish a new Hilbert-type inequality in the whole plane, and the constant factor of the newly obtained inequality is proved to be the best possible. Additionally, by means of the partial fraction expansion of the tangent function, some special and interesting inequalities are presented at the end of the paper.
Hardin and Taylor proved that any function on the reals—even a nowhere continuous one—can be correctly predicted, based solely on its past behavior, at almost every point in time. They showed that one could even arrange for the predictors to be robust with respect to simple time shifts, and asked whether they could be robust with respect to other, more complicated time distortions. This question was partially answered by Bajpai and Velleman, who provided upper and lower frontiers (in the subgroup lattice of $\mathrm{Homeo}^+(\mathbb {R})$) on how robust a predictor can possibly be. We improve both frontiers, some of which reduce ultimately to consequences of Hölder’s Theorem (that every Archimedean group is abelian).
Let $\mathcal {N}$ be a non-Archimedean-ordered field extension of the real numbers that is real closed and Cauchy complete in the topology induced by the order, and whose Hahn group is Archimedean. In this paper, we first review the properties of weakly locally uniformly differentiable (WLUD) functions, $k$ times weakly locally uniformly differentiable (WLUD$^{k}$) functions and WLUD$^{\infty }$ functions at a point or on an open subset of $\mathcal {N}$. Then, we show under what conditions a WLUD$^{\infty }$ function at a point $x_0\in \mathcal {N}$ is analytic in an interval around $x_0$, that is, it has a convergent Taylor series at any point in that interval. We generalize the concepts of WLUD$^{k}$ and WLUD$^{\infty }$ to functions from $\mathcal {N}^{n}$ to $\mathcal {N}$, for any $n\in \mathbb {N}$. Then, we formulate conditions under which a WLUD$^{\infty }$ function at a point $\boldsymbol {x_0} \in \mathcal {N}^{n}$ is analytic at that point.
Savin [‘
$\mathcal {C}^{1}$
regularity for infinity harmonic functions in two dimensions’, Arch. Ration. Mech. Anal.3(176) (2005), 351–361] proved that every planar absolutely minimizing Lipschitz (AML) function is continuously differentiable whenever the ambient space is Euclidean. More recently, Peng et al. [‘Regularity of absolute minimizers for continuous convex Hamiltonians’, J. Differential Equations274 (2021), 1115–1164] proved that this property remains true for planar AML functions for certain convex Hamiltonians, using some Euclidean techniques. Their result can be applied to AML functions defined in two-dimensional normed spaces with differentiable norm. In this work we develop a purely non-Euclidean technique to obtain the regularity of planar AML functions in two-dimensional normed spaces with differentiable norm.
Given
$\beta \in (1,2]$
, let
$T_{\beta }$
be the
$\beta $
-transformation on the unit circle
$[0,1)$
such that
$T_{\beta }(x)=\beta x\pmod 1$
. For each
$t\in [0,1)$
, let
$K_{\beta }(t)$
be the survivor set consisting of all
$x\in [0,1)$
whose orbit
$\{T^{n}_{\beta }(x): n\ge 0\}$
never hits the open interval
$(0,t)$
. Kalle et al [Ergod. Th. & Dynam. Sys.40(9) (2020) 2482–2514] proved that the Hausdorff dimension function
$t\mapsto \dim _{H} K_{\beta }(t)$
is a non-increasing Devil’s staircase. So there exists a critical value
$\tau (\beta )$
such that
$\dim _{H} K_{\beta }(t)>0$
if and only if
$t<\tau (\beta )$
. In this paper, we determine the critical value
$\tau (\beta )$
for all
$\beta \in (1,2]$
, answering a question of Kalle et al (2020). For example, we find that for the Komornik–Loreti constant
$\beta \approx 1.78723$
, we have
$\tau (\beta )=(2-\beta )/(\beta -1)$
. Furthermore, we show that (i) the function
$\tau : \beta \mapsto \tau (\beta )$
is left continuous on
$(1,2]$
with right-hand limits everywhere, but has countably infinitely many discontinuities; (ii)
$\tau $
has no downward jumps, with
$\tau (1+)=0$
and
$\tau (2)=1/2$
; and (iii) there exists an open set
$O\subset (1,2]$
, whose complement
$(1,2]\setminus O$
has zero Hausdorff dimension, such that
$\tau $
is real-analytic, convex, and strictly decreasing on each connected component of O. Consequently, the dimension
$\dim _{H} K_{\beta }(t)$
is not jointly continuous in
$\beta $
and t. Our strategy to find the critical value
$\tau (\beta )$
depends on certain substitutions of Farey words and a renormalization scheme from dynamical systems.
The cusped hyperbolic n-orbifolds of minimal volume are well known for
$n\leq 9$
. Their fundamental groups are related to the Coxeter n-simplex groups
$\Gamma _{n}$
. In this work, we prove that
$\Gamma _{n}$
has minimal growth rate among all non-cocompact Coxeter groups of finite covolume in
$\textrm{Isom}\mathbb H^{n}$
. In this way, we extend previous results of Floyd for
$n=2$
and of Kellerhals for
$n=3$
, respectively. Our proof is a generalization of the methods developed together with Kellerhals for the cocompact case.
According to a 2002 theorem by Cardaliaguet and Tahraoui, an isotropic, compact and connected subset of the group $\textrm {GL}^{\!+}(2)$ of invertible $2\times 2$ - - matrices is rank-one convex if and only if it is polyconvex. In a 2005 Journal of Convex Analysis article by Alexander Mielke, it has been conjectured that the equivalence of rank-one convexity and polyconvexity holds for isotropic functions on $\textrm {GL}^{\!+}(2)$ as well, provided their sublevel sets satisfy the corresponding requirements. We negatively answer this conjecture by giving an explicit example of a function $W\colon \textrm {GL}^{\!+}(2)\to \mathbb {R}$ which is not polyconvex, but rank-one convex as well as isotropic with compact and connected sublevel sets.
The main result of the present article is a Rademacher-type theorem for intrinsic Lipschitz graphs of codimension
$k\leq n$
in sub-Riemannian Heisenberg groups
${\mathbb H}^{n}$
. For the purpose of proving such a result, we settle several related questions pertaining both to the theory of intrinsic Lipschitz graphs and to the one of currents. First, we prove an extension result for intrinsic Lipschitz graphs as well as a uniform approximation theorem by means of smooth graphs: both of these results stem from a new definition (equivalent to the one introduced by B. Franchi, R. Serapioni and F. Serra Cassano) of intrinsic Lipschitz graphs and are valid for a more general class of intrinsic Lipschitz graphs in Carnot groups. Second, our proof of Rademacher’s theorem heavily uses the language of currents in Heisenberg groups: one key result is, for us, a version of the celebrated constancy theorem. Inasmuch as Heisenberg currents are defined in terms of Rumin’s complex of differential forms, we also provide a convenient basis of Rumin’s spaces. Eventually, we provide some applications of Rademacher’s theorem including a Lusin-type result for intrinsic Lipschitz graphs, the equivalence between
${\mathbb H}$
-rectifiability and ‘Lipschitz’
${\mathbb H}$
-rectifiability and an area formula for intrinsic Lipschitz graphs in Heisenberg groups.
We give a new approach to characterising and computing the set of global maximisers and minimisers of the functions in the Takagi class and, in particular, of the Takagi–Landsberg functions. The latter form a family of fractal functions
$f_\alpha:[0,1]\to{\mathbb R}$
parameterised by
$\alpha\in(-2,2)$
. We show that
$f_\alpha$
has a unique maximiser in
$[0,1/2]$
if and only if there does not exist a Littlewood polynomial that has
$\alpha$
as a certain type of root, called step root. Our general results lead to explicit and closed-form expressions for the maxima of the Takagi–Landsberg functions with
$\alpha\in(-2,1/2]\cup(1,2)$
. For
$(1/2,1]$
, we show that the step roots are dense in that interval. If
$\alpha\in (1/2,1]$
is a step root, then the set of maximisers of
$f_\alpha$
is an explicitly given perfect set with Hausdorff dimension
$1/(n+1)$
, where n is the degree of the minimal Littlewood polynomial that has
$\alpha$
as its step root. In the same way, we determine explicitly the minima of all Takagi–Landsberg functions. As a corollary, we show that the closure of the set of all real roots of all Littlewood polynomials is equal to
$[-2,-1/2]\cup[1/2,2]$
.
In this paper, we establish an infinite series expansion of Leray–Trudinger inequality, which is closely related with Hardy inequality and Moser Trudinger inequality. Our result extends early results obtained by Mallick and Tintarev [A. Mallick and C. Tintarev. An improved Leray-Trudinger inequality. Commun. Contemp. Math. 20 (2018), 17501034. OP 21] to the case with many logs. It should be pointed out that our result is about series expansion of Hardy inequality under the case $p=n$, which case is not considered by Gkikas and Psaradakis in [K. T. Gkikas and G. Psaradakis. Optimal non-homogeneous improvements for the series expansion of Hardy's inequality. Commun. Contemp. Math. doi:10.1142/S0219199721500310]. However, we can't obtain the optimal form by our method.
In this paper, we concern with a backward problem for a nonlinear time fractional wave equation in a bounded domain. By applying the properties of Mittag-Leffler functions and the method of eigenvalue expansion, we establish some results about the existence and uniqueness of the mild solutions of the proposed problem based on the compact technique. Due to the ill-posedness of backward problem in the sense of Hadamard, a general filter regularization method is utilized to approximate the solution and further we prove the convergence rate for the regularized solutions.