We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $H^{2}$ be the Hardy space over the bidisk. It is known that Hilbert–Schmidt invariant subspaces of $H^{2}$ have nice properties. An invariant subspace which is unitarily equivalent to some invariant subspace whose continuous spectrum does not coincide with $\overline{\mathbb{D}}$ is Hilbert–Schmidt. We shall introduce the concept of splittingness for invariant subspaces and prove that they are Hilbert–Schmidt.
We prove that the extension problem from one-dimensional subvarieties with values in Bergman space $H^{1}(D)$ on convex finite type domains can be solved by means of appropriate measures. We obtain also almost optimal results concerning the extension problem for other Bergman spaces and one-dimensional varieties.
We study the complete Kähler–Einstein metric of certain Hartogs domains ${\rm\Omega}_{s}$ over bounded homogeneous domains in $\mathbb{C}^{n}$. The generating function of the Kähler–Einstein metric satisfies a complex Monge–Ampère equation with Dirichlet boundary condition. We reduce the Monge–Ampère equation to an ordinary differential equation and solve it explicitly when we take the parameter $s$ for some critical value. This generalizes previous results when the base is either the Euclidean unit ball or a bounded symmetric domain.
As an application of a sharp L2 extension theorem for holomorphic functions in Guan and Zhou, a stability theorem for the boundary asymptotics of the Bergman kernel is proved. An alternate proof of the extension theorem is given, too. It is a simplified proof in the sense that it is free from ordinary differential equations.
We consider the random functions $S_{N}(z):=\sum _{n=1}^{N}z(n)$, where $z(n)$ is the completely multiplicative random function generated by independent Steinhaus variables $z(p)$. It is shown that $\mathbb{E}|S_{N}|\gg \sqrt{N}(\log N)^{-0.05616}$ and that $(\mathbb{E}|S_{N}|^{q})^{1/q}\gg _{q}\sqrt{N}(\log N)^{-0.07672}$ for all $q>0$.
Let $A_{{\it\alpha}}^{p}$ be the weighted Bergman space of the unit ball in ${\mathcal{C}}^{n}$, $n\geq 2$. Recently, Miao studied products of two Toeplitz operators defined on $A_{{\it\alpha}}^{p}$. He proved a necessary condition and a sufficient condition for boundedness of such products in terms of the Berezin transform. We modify the Berezin transform and improve his sufficient condition for products of Toeplitz operators. We also investigate products of two Hankel operators defined on $A_{{\it\alpha}}^{p}$, and products of the Hankel operator and the Toeplitz operator. In particular, in both cases, we prove sufficient conditions for boundedness of the products.
Given a positive Borel measure ${\it\mu}$ on the $n$-dimensional Euclidean space $\mathbb{C}^{n}$, we characterise the boundedness (and compactness) of Toeplitz operators $T_{{\it\mu}}$ between Fock spaces $F^{\infty }({\it\varphi})$ and $F^{p}({\it\varphi})$ with $0<p\leq \infty$ in terms of $t$-Berezin transforms and averaging functions of ${\it\mu}$. Our result extends recent work of Mengestie [‘On Toeplitz operators between Fock spaces’, Integral Equations Operator Theory78 (2014), 213–224] and others.
The main aim of this article is to give sufficient conditions for a family of meromorphic mappings of a domain D in ℂn into ℙN(ℂ) to be meromorphically normal if they satisfy only some very weak conditions with respect to moving hypersurfaces in ℙN(ℂ), namely, that their intersections with these moving hypersurfaces, which moreover may depend on the meromorphic maps, are in some sense uniform. Our results generalize and complete previous results in this area, especially the works of Fujimoto, Tu, Tu-Li, Mai-Thai-Trang, and the recent work of Quang-Tan.
where ${\it\mu}$ is a complex Borel measure with $|{\it\mu}|(\mathbb{D})<\infty$. We generalize this result to all Besov spaces $B_{p}$ with $0<p\leq 1$ and all Lipschitz spaces ${\rm\Lambda}_{t}$ with $t>1$. We also obtain a version for Bergman and Fock spaces.
We introduce a dual logarithmic residue map for hypersurface singularities and use it to answer a question of Kyoji Saito. Our result extends a theorem of Lê and Saito by an algebraic characterization of hypersurfaces that are normal crossing in codimension one. For free divisors, we relate the latter condition to other natural conditions involving the Jacobian ideal and the normalization. This leads to an algebraic characterization of normal crossing divisors. As a side result, we describe all free divisors with Gorenstein singular locus.
It is a well-known result that if a nonconstant meromorphic function $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}f$ on $\mathbb{C}$ and its $l$th derivative $f^{(l)}$ have no zeros for some $l\geq 2$, then $f$ is of the form $f(z)=\exp (Az+B)$ or $f(z)=(Az+B)^{-n}$ for some constants $A$, $B$. We extend this result to meromorphic functions of several variables, by first extending the classic Tumura–Clunie theorem for meromorphic functions of one complex variable to that of meromorphic functions of several complex variables using Nevanlinna theory.
We show that the modulus of the Bergman kernel $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}B(z, \zeta )$ of a general homogeneous Siegel domain of type II is ‘almost constant’ uniformly with respect to $z$ when $\zeta $ varies inside a Bergman ball. The control is expressed in terms of the Bergman distance. This result was proved by A. Korányi for symmetric Siegel domains of type II. Subsequently, R. R. Coifman and R. Rochberg used it to establish an atomic decomposition theorem and an interpolation theorem by functions in Bergman spaces $A^p$ on these domains. The atomic decomposition theorem and the interpolation theorem are extended here to the general homogeneous case using the same tools. We further extend the range of exponents $p$ via functional analysis using recent estimates.
Let Ap(φ) be the pth Bergman space consisting of all holomorphic functions f on the unit ball B of ℂn for which , where φ is a given normal weight. Let Tg be the extended Cesàro operator with holomorphic symbol g. The essential norm of Tg as an operator from Ap (φ)to Aq (φ)is denoted by . In this paper it is proved that, for p≤q, with 1/k=(1/p)−(1/q) , where ℜg(z)is the radial derivative of g; and for p>q, with 1/s=(1/q)−(1/p) .
We obtain necessary and sufficient conditions for the compactness of differences of composition operators acting on the weighted Bergman spaces in the unit ball. A representation of a composition operator as a finite sum of composition operators modulo compact operators is also studied.
Let Bn denote the unit ball in ℂn, n≥1. Given an α>0, let ℱα(n) denote the class of functions defined for z∈Bn by integrating the kernel (1−〈z,w〉)−α against a complex Borel measure dμ(w), w∈Bn. The family ℱ0(n) corresponds to the logarithmic kernel log (1/(1−〈z,w〉)). Various properties of the spaces ℱα(n), α≥0, are obtained. In particular, pointwise multiplies for ℱα(n) are investigated.
We investigate the composition operators Cφ acting on the Bergman space of the unit disc D, where φ is a holomorphic self-map of D. Some new conditions for Cφ to belong to the Schatten class 𝒮p are obtained. We also construct a compact composition operator which does not belong to any Schatten class.
Let $\left( X,\,g \right)$ be a complete noncompact Kähler manifold, of dimension $n\,\ge \,2$, with positive Ricci curvature and of standard type (see the definition below). N. Mok proved that $X$ can be compactified, i.e., $X$ is biholomorphic to a quasi-projective variety. The aim of this paper is to prove that the ${{L}^{2}}$ holomorphic sections of the line bundle $K_{X}^{-q}$ and the volume form of the metric $g$ have no essential singularities near the divisor at infinity. As a consequence we obtain a comparison between the volume forms of the Kähler metric $g$ and of the Fubini-Study metric induced on $X$. In the case of ${{\dim}_{\mathbb{C}}}\,X\,=\,2$, we establish a relation between the number of components of the divisor $D$ and the dimension of the ${{H}^{i}}(\bar{X},\,\Omega \frac{1}{X}(\log \,D))$.
Let φ and ψ be holomorphic self-maps of the unit polydisc Un in the n-dimensional complex space, and denote by Cφ and Cψ the induced composition operators. This paper gives some simple estimates of the essential norm for the difference of composition operators Cφ−Cψ from Bloch space to bounded holomorphic function space in the unit polydisc. The compactness of the difference is also characterized.