To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we first give a description of the holomorphic automorphism group of a convex domain which is a simple case of the so-called generalised minimal ball. As an application, we show that any proper holomorphic self-mapping on this type of domain is biholomorphic.
Let ${\mathcal{H}}ol(B_{d})$ denote the space of holomorphic functions on the unit ball $B_{d}$ of $\mathbb{C}^{d}$, $d\geq 1$. Given a log-convex strictly positive weight $w(r)$ on $[0,1)$, we construct a function $f\in {\mathcal{H}}ol(B_{d})$ such that the standard integral means $M_{p}(f,r)$ and $w(r)$ are equivalent for any $p$ with $0<p\leq \infty$. We also obtain similar results related to volume integral means.
We define the notion of $\unicode[STIX]{x1D6F7}$-Carleson measures, where $\unicode[STIX]{x1D6F7}$ is either a concave growth function or a convex growth function, and provide an equivalent definition. We then characterize $\unicode[STIX]{x1D6F7}$-Carleson measures for Bergman–Orlicz spaces and use them to characterize multipliers between Bergman–Orlicz spaces.
The discrepancy function measures the deviation of the empirical distribution of a point set in $[0,1]^{d}$ from the uniform distribution. In this paper, we study the classical discrepancy function with respect to the bounded mean oscillation and exponential Orlicz norms, as well as Sobolev, Besov and Triebel–Lizorkin norms with dominating mixed smoothness. We give sharp bounds for the discrepancy function under such norms with respect to infinite sequences.
We use a generalised Nevanlinna counting function to compute the Hilbert–Schmidt norm of a composition operator on the Bergman space $L_{a}^{2}(\mathbb{D})$ and weighted Bergman spaces $L_{a}^{1}(\text{d}A_{\unicode[STIX]{x1D6FC}})$ when $\unicode[STIX]{x1D6FC}$ is a nonnegative integer.
Let $H^{2}$ be the Hardy space over the bidisk. It is known that Hilbert–Schmidt invariant subspaces of $H^{2}$ have nice properties. An invariant subspace which is unitarily equivalent to some invariant subspace whose continuous spectrum does not coincide with $\overline{\mathbb{D}}$ is Hilbert–Schmidt. We shall introduce the concept of splittingness for invariant subspaces and prove that they are Hilbert–Schmidt.
We prove that the extension problem from one-dimensional subvarieties with values in Bergman space $H^{1}(D)$ on convex finite type domains can be solved by means of appropriate measures. We obtain also almost optimal results concerning the extension problem for other Bergman spaces and one-dimensional varieties.
We study the complete Kähler–Einstein metric of certain Hartogs domains ${\rm\Omega}_{s}$ over bounded homogeneous domains in $\mathbb{C}^{n}$. The generating function of the Kähler–Einstein metric satisfies a complex Monge–Ampère equation with Dirichlet boundary condition. We reduce the Monge–Ampère equation to an ordinary differential equation and solve it explicitly when we take the parameter $s$ for some critical value. This generalizes previous results when the base is either the Euclidean unit ball or a bounded symmetric domain.
As an application of a sharp L2 extension theorem for holomorphic functions in Guan and Zhou, a stability theorem for the boundary asymptotics of the Bergman kernel is proved. An alternate proof of the extension theorem is given, too. It is a simplified proof in the sense that it is free from ordinary differential equations.
We consider the random functions $S_{N}(z):=\sum _{n=1}^{N}z(n)$, where $z(n)$ is the completely multiplicative random function generated by independent Steinhaus variables $z(p)$. It is shown that $\mathbb{E}|S_{N}|\gg \sqrt{N}(\log N)^{-0.05616}$ and that $(\mathbb{E}|S_{N}|^{q})^{1/q}\gg _{q}\sqrt{N}(\log N)^{-0.07672}$ for all $q>0$.
Let $A_{{\it\alpha}}^{p}$ be the weighted Bergman space of the unit ball in ${\mathcal{C}}^{n}$, $n\geq 2$. Recently, Miao studied products of two Toeplitz operators defined on $A_{{\it\alpha}}^{p}$. He proved a necessary condition and a sufficient condition for boundedness of such products in terms of the Berezin transform. We modify the Berezin transform and improve his sufficient condition for products of Toeplitz operators. We also investigate products of two Hankel operators defined on $A_{{\it\alpha}}^{p}$, and products of the Hankel operator and the Toeplitz operator. In particular, in both cases, we prove sufficient conditions for boundedness of the products.
Given a positive Borel measure ${\it\mu}$ on the $n$-dimensional Euclidean space $\mathbb{C}^{n}$, we characterise the boundedness (and compactness) of Toeplitz operators $T_{{\it\mu}}$ between Fock spaces $F^{\infty }({\it\varphi})$ and $F^{p}({\it\varphi})$ with $0<p\leq \infty$ in terms of $t$-Berezin transforms and averaging functions of ${\it\mu}$. Our result extends recent work of Mengestie [‘On Toeplitz operators between Fock spaces’, Integral Equations Operator Theory78 (2014), 213–224] and others.
The main aim of this article is to give sufficient conditions for a family of meromorphic mappings of a domain D in ℂn into ℙN(ℂ) to be meromorphically normal if they satisfy only some very weak conditions with respect to moving hypersurfaces in ℙN(ℂ), namely, that their intersections with these moving hypersurfaces, which moreover may depend on the meromorphic maps, are in some sense uniform. Our results generalize and complete previous results in this area, especially the works of Fujimoto, Tu, Tu-Li, Mai-Thai-Trang, and the recent work of Quang-Tan.
where ${\it\mu}$ is a complex Borel measure with $|{\it\mu}|(\mathbb{D})<\infty$. We generalize this result to all Besov spaces $B_{p}$ with $0<p\leq 1$ and all Lipschitz spaces ${\rm\Lambda}_{t}$ with $t>1$. We also obtain a version for Bergman and Fock spaces.
We introduce a dual logarithmic residue map for hypersurface singularities and use it to answer a question of Kyoji Saito. Our result extends a theorem of Lê and Saito by an algebraic characterization of hypersurfaces that are normal crossing in codimension one. For free divisors, we relate the latter condition to other natural conditions involving the Jacobian ideal and the normalization. This leads to an algebraic characterization of normal crossing divisors. As a side result, we describe all free divisors with Gorenstein singular locus.
It is a well-known result that if a nonconstant meromorphic function $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}f$ on $\mathbb{C}$ and its $l$th derivative $f^{(l)}$ have no zeros for some $l\geq 2$, then $f$ is of the form $f(z)=\exp (Az+B)$ or $f(z)=(Az+B)^{-n}$ for some constants $A$, $B$. We extend this result to meromorphic functions of several variables, by first extending the classic Tumura–Clunie theorem for meromorphic functions of one complex variable to that of meromorphic functions of several complex variables using Nevanlinna theory.
We show that the modulus of the Bergman kernel $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}B(z, \zeta )$ of a general homogeneous Siegel domain of type II is ‘almost constant’ uniformly with respect to $z$ when $\zeta $ varies inside a Bergman ball. The control is expressed in terms of the Bergman distance. This result was proved by A. Korányi for symmetric Siegel domains of type II. Subsequently, R. R. Coifman and R. Rochberg used it to establish an atomic decomposition theorem and an interpolation theorem by functions in Bergman spaces $A^p$ on these domains. The atomic decomposition theorem and the interpolation theorem are extended here to the general homogeneous case using the same tools. We further extend the range of exponents $p$ via functional analysis using recent estimates.
Let Ap(φ) be the pth Bergman space consisting of all holomorphic functions f on the unit ball B of ℂn for which , where φ is a given normal weight. Let Tg be the extended Cesàro operator with holomorphic symbol g. The essential norm of Tg as an operator from Ap (φ)to Aq (φ)is denoted by . In this paper it is proved that, for p≤q, with 1/k=(1/p)−(1/q) , where ℜg(z)is the radial derivative of g; and for p>q, with 1/s=(1/q)−(1/p) .
We obtain necessary and sufficient conditions for the compactness of differences of composition operators acting on the weighted Bergman spaces in the unit ball. A representation of a composition operator as a finite sum of composition operators modulo compact operators is also studied.