To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove a general result on Bailey pairs and show that two Bailey pairs of Bringmann and Kane are special cases. We also show how to use a change of base formula to pass from the pairs of Bringmann and Kane to pairs used by Andrews in his study of Ramanujan's seventh order mock theta functions. We derive several more Bailey pairs of a similar type and use these to construct a number of new q-hypergeometric double sums which are mock theta functions. Finally, we prove identities between some of these mock theta double sums and classical mock theta functions.
In Bennett et al. [BGG reciprocity for current algebras, Adv. Math. 231 (2012), 276–305] it was conjectured that a BGG-type reciprocity holds for the category of graded representations with finite-dimensional graded components for the current algebra associated to a simple Lie algebra. We associate a current algebra to any indecomposable affine Lie algebra and show that, in this generality, the BGG reciprocity is true for the corresponding category of representations.
We extend results of Andrews and Bressoud [‘Vanishing coefficients in infinite product expansions’, J. Aust. Math. Soc. Ser. A27(2) (1979), 199–202] on the vanishing of coefficients in the series expansions of certain infinite products. These results have the form that if
for certain integers $k$, $m$, $s$ and $t$, where $r=sm+t$, then $c_{kn-rs}$ is always zero. Our theorems also partly give a simpler reformulation of results of Alladi and Gordon [‘Vanishing coefficients in the expansion of products of Rogers–Ramanujan type’, in: The Rademacher Legacy to Mathematics (University Park, PA, 1992), Contemporary Mathematics, 166 (American Mathematical Society, Providence, RI, 1994), 129–139], but also give results for cases not covered by the theorems of Alladi and Gordon. We also give some interpretations of the analytic results in terms of integer partitions.
Ramanujan’s last letter to Hardy concerns the asymptotic properties of modular forms and his ‘mock theta functions’. For the mock theta function $f(q)$, Ramanujan claims that as $q$ approaches an even-order $2k$ root of unity, we have
We prove Ramanujan’s claim as a special case of a more general result. The implied constants in Ramanujan’s claim are not mysterious. They arise in Zagier’s theory of ‘quantum modular forms’. We provide explicit closed expressions for these ‘radial limits’ as values of a ‘quantum’ $q$-hypergeometric function which underlies a new relationship between Dyson’s rank mock theta function and the Andrews–Garvan crank modular form. Along these lines, we show that the Rogers–Fine false $\vartheta $-functions, functions which have not been well understood within the theory of modular forms, specialize to quantum modular forms.
We study Markov measures and p-adic random walks with the use of states on the Cuntz algebras Op. Via the Gelfand–Naimark–Segal construction, these come from families of representations of Op. We prove that these representations reflect selfsimilarity especially well. In this paper, we consider a Cuntz–Krieger type algebra where the adjacency matrix depends on a parameter q ( q=1 is the case of Cuntz–Krieger algebra). This is an ongoing work generalizing a construction of certain measures associated to random walks on graphs.
Using the framework of overpartitions, we give a combinatorial interpretation and proof of the q-Bailey identity. We then deduce from this identity a couple of facts about overpartitions. We show that the method of proof of the q-Bailey identity also applies to the (first) q-Gauss identity.
Despite the presence of many famous examples, the precise interplay between basic hypergeometric series and modular forms remains a mystery. We consider this problem for canonical spaces of weight 3/2 harmonic Maass forms. Using recent work of Zwegers, we exhibit forms that have the property that their holomorphic parts arise from Lerch-type series, which in turn may be formulated in terms of the Rogers–Fine basic hypergeometric series.
We show that some q-series such as universal mock theta functions are linear sums of theta quotients and mock Jacobi forms of weight 1/2, which become holomorphic parts of real analytic modular forms when they are restricted to torsion points and multiplied by suitable powers of q. We also prove that certain linear sums of q-series are weakly holomorphic modular forms of weight 1/2 due to annihilation of mock Jacobi forms or completion by mock Jacobi forms. As an application, we obtain a relation between the rank and crank of a partition.
A new type of basic hypergeometric series based on Macdonald polynomials is introduced. Besides a pair of Macdonald polynomials attached to two different sets of variables, a key ingredient in the basic hypergeometric series is a bisymmetric function related to Macdonald’s commuting family of q-difference operators, to the Selberg integrals of Tarasov and Varchenko, and to alternating sign matrices. Our main result for series is a multivariable generalization of the celebrated q-binomial theorem. In the limit this q-binomial sum yields a new Selberg integral for Jack polynomials.
The spherical functions of triangle buildings can be described in terms of certain two-dimensional orthogonal polynomials on Steiner's hypocycloid which are closely related to Hall-Littlewood polynomials. They lead to a one-parameter family of two-dimensional polynimial hypergroups. In this paper we investigate isotropic random walks on the vertex sets of triangle buildings in terms of their projections to these hypergroups. We present strong laws of large numbers, a central limit theorem, and a local limit theorem; all these results are well-known for homogeneous trees. Proofs are based on moment functions on hypergroups and on explicit expansions of the hypergroup characters in terms of certain two-dimensional Tchebychev polynimials.
A new, elementary proof of the Macdonald identities for An−1 using induction on n is given. Specifically, the Macdonald identity for An is deduced by multiplying the Macdonald identity for An−1 and n Jacobi triple product identities together.
The paper puts forward steady-state Markov chain models for the Heine and Euler distributions. The models for oil exploration strategies that were discussed by Benkherouf and Bather (1988) are reinterpreted as current-age models for discrete renewal processes. Steady-state success-runs processes with non-zero probabilities that a trial is abandoned, Foster processes, and equilibrium random walks corresponding to elective M/M/1 queues are also examined.