To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We observe a realization of a stationary weighted Voronoi tessellation of the d-dimensional Euclidean space within a bounded observation window. Given a geometric characteristic of the typical cell, we use the minus-sampling technique to construct an unbiased estimator of the average value of this geometric characteristic. Under mild conditions on the weights of the cells, we establish variance asymptotics and the asymptotic normality of the unbiased estimator as the observation window tends to the whole space. Moreover, weak consistency is shown for this estimator.
In this paper, the signature of a multi-state coherent system with binary-state components is discussed, and then it is extended to the case of ordered system lifetimes arising from a life-test on coherent multi-state systems with the same multi-state system signature. Some properties of the multi-state system signature and the ordered multi-state system signature are also studied. The results established here are finally explained through some illustrative examples.
We consider coherent systems with independent and identically distributed components. While it is clear that the system’s life will be stochastically larger when the components are replaced with stochastically better components, we show that, in general, similar results may not hold for hazard rate, reverse hazard rate, and likelihood ratio orderings. We find sufficient conditions on the signature vector for these results to hold. These results are combined with other well-known results in the literature to get more general results for comparing two systems of the same size with different signature vectors and possibly with different independent and identically distributed component lifetimes. Some numerical examples are also provided to illustrate the theoretical results.
We determine, up to multiplicative constants, the number of integers $n\leq x$ that have a divisor in $(y,2y]$ and no prime factor $\leq w$. Our estimate is uniform in $x,y,w$. We apply this to determine the order of the number of distinct integers in the $N\times N$ multiplication table, which are free of prime factors $\leq w$, and the number of distinct fractions of the form $(a_{1}a_{2})/(b_{1}b_{2})$ with $1\leq a_{1}\leq b_{1}\leq N$ and $1\leq a_{2}\leq b_{2}\leq N$.
The main result of this note implies that any function from the product of several vector spaces to a vector space can be uniquely decomposed into the sum of mutually orthogonal functions that are odd in some of the arguments and even in the other arguments. Probabilistic notions and facts are employed to simplify statements and proofs.
The convex hull of a sample is used to approximate the support of the underlying distribution. This approximation has many practical implications in real life. To approximate the distribution of the functionals of convex hulls, asymptotic theory plays a crucial role. Unfortunately most of the asymptotic results are computationally intractable. To address this computational intractability, we consider consistent bootstrapping schemes for certain cases. Let $S_n=\{X_i\}_{i=1}^{n}$ be a sequence of independent and identically distributed random points uniformly distributed on an unknown convex set in $\mathbb{R}^{d}$ ($d\ge 2$). We suggest a bootstrapping scheme that relies on resampling uniformly from the convex hull of $S_n$. Moreover, the resampling asymptotic consistency of certain functionals of convex hulls is derived under this bootstrapping scheme. In particular, we apply our bootstrapping technique to the Hausdorff distance between the actual convex set and its estimator. For $d=2$, we investigate the asymptotic consistency of the suggested bootstrapping scheme for the area of the symmetric difference and the perimeter difference between the actual convex set and its estimate. In all cases the consistency allows us to rely on the suggested resampling scheme to study the actual distributions, which are not computationally tractable.
In this paper, we consider exponentiated location-scale model and obtain several ordering results between extreme order statistics in various senses. Under majorization type partial order-based conditions, the comparisons are established according to the usual stochastic order, hazard rate order and reversed hazard rate order. Multiple-outlier models are considered. When the number of components are equal, the results are obtained based on the ageing faster order in terms of the hazard rate and likelihood ratio orders. For unequal number of components, we develop comparisons according to the usual stochastic order, hazard rate order, and likelihood ratio order. Numerical examples are considered to illustrate the results.
Consider a random vector $\textbf{U}$ whose distribution function coincides in its upper tail with that of an Archimedean copula. We report the fact that the conditional distribution of $\textbf{U}$, conditional on one of its components, has under a mild condition on the generator function independent upper tails, no matter what the unconditional tail behavior is. This finding is extended to Archimax copulas.
The purpose of this paper is to provide further understanding into the structure of the sequential allocation (“stochastic multi-armed bandit”) problem by establishing probability one finite horizon bounds and convergence rates for the sample regret associated with two simple classes of allocation policies. For any slowly increasing function g, subject to mild regularity constraints, we construct two policies (the g-Forcing, and the g-Inflated Sample Mean) that achieve a measure of regret of order O(g(n)) almost surely as n → ∞, bound from above and below. Additionally, almost sure upper and lower bounds on the remainder term are established. In the constructions herein, the function g effectively controls the “exploration” of the classical “exploration/exploitation” tradeoff.
The Ginzburg–Landau functional is a phase transition model which is suitable for classification type problems. We study the asymptotics of a sequence of Ginzburg–Landau functionals with anisotropic interaction potentials on point clouds Ψn where n denotes the number data points. In particular, we show the limiting problem, in the sense of Γ-convergence, is related to the total variation norm restricted to functions taking binary values, which can be understood as a surface energy. We generalize the result known for isotropic interaction potentials to the anisotropic case and add a result concerning the rate of convergence.
Consider a sample 𝒳n={X1,…,Xn} of independent and identically distributed variables drawn with a probability distribution ℙX supported on a compact set M⊂ℝd. In this paper we mainly deal with the study of a natural estimator for the geodesic distance on M. Under rather general geometric assumptions on M, we prove a general convergence result. Assuming M to be a compact manifold of known dimension d′≤d, and under regularity assumptions on ℙX, we give an explicit convergence rate. In the case when M has no boundary, knowledge of the dimension d′ is not needed to obtain this convergence rate. The second part of the work consists in building an estimator for the Fréchet expectations on M, and proving its convergence under regularity conditions, applying the previous results.
The Samaniego signature is a relevant tool for studying the performance of a system whose component lifetimes are exchangeable. It is well known that the stochastic ordering of the signatures of two systems implies the same for the respective system lifetimes. We prove that the reverse claim is not true when the component lifetimes are independent and identically distributed. There exist small proportions of systems with stochastically ordered lifetimes whose signatures are not ordered. We present a simple procedure in order to check whether the system lifetimes are stochastically ordered even if their signatures are not comparable.
The consistency of a non-local anisotropic Ginzburg–Landau type functional for data classification and clustering is studied. The Ginzburg–Landau objective functional combines a double well potential, that favours indicator valued functions, and the p-Laplacian, that enforces regularity. Under appropriate scaling between the two terms, minimisers exhibit a phase transition on the order of ɛ = ɛn, where n is the number of data points. We study the large data asymptotics, i.e. as n → ∝, in the regime where ɛn → 0. The mathematical tool used to address this question is Γ-convergence. It is proved that the discrete model converges to a weighted anisotropic perimeter.
We give a simple conceptual proof of the consistency of a test for multivariate uniformity in a bounded set K ⊂ ℝd that is based on the maximal spacing generated by independent and identically distributed points X1, . . ., Xn in K, i.e. the volume of the largest convex set of a given shape that is contained in K and avoids each of these points. Since asymptotic results for the d > 1 case are only availabe under uniformity, a key element of the proof is a suitable coupling. The proof is general enough to cover the case of testing for uniformity on compact Riemannian manifolds with spacings defined by geodesic balls.
In 1973, Williams [D. Williams, On Rényi's ‘record’ problem and Engel's series, Bull. London Math. Soc.5 (1973), 235–237] introduced two interesting discrete Markov processes, namely C-processes and A-processes, which are related to record times in statistics and Engel's series in number theory respectively. Moreover, he showed that these two processes share the same classical limit theorems, such as the law of large numbers, central limit theorem and law of the iterated logarithm. In this paper, we consider the large deviations for these two Markov processes, which indicate that there is a difference between C-processes and A-processes in the context of large deviations.
We investigate conditions in order to decide whether a given sequence of real numbers represents expected maxima or expected ranges. The main result provides a novel necessary and sufficient condition, relating an expected maxima sequence to a translation of a Bernstein function through its Lévy–Khintchine representation.
We investigate the estimation of the perimeter of a set by a graph cut of a random geometric graph. For Ω ⊆ D = (0, 1)d with d ≥ 2, we are given n random independent and identically distributed points on D whose membership in Ω is known. We consider the sample as a random geometric graph with connection distance ε > 0. We estimate the perimeter of Ω (relative to D) by the, appropriately rescaled, graph cut between the vertices in Ω and the vertices in D ∖ Ω. We obtain bias and variance estimates on the error, which are optimal in scaling with respect to n and ε. We consider two scaling regimes: the dense (when the average degree of the vertices goes to ∞) and the sparse one (when the degree goes to 0). In the dense regime, there is a crossover in the nature of the approximation at dimension d = 5: we show that in low dimensions d = 2, 3, 4 one can obtain confidence intervals for the approximation error, while in higher dimensions one can obtain only error estimates for testing the hypothesis that the perimeter is less than a given number.
Quasi-stationary distributions (QSDs) arise from stochastic processes that exhibit transient equilibrium behaviour on the way to absorption. QSDs are often mathematically intractable and even drawing samples from them is not straightforward. In this paper the framework of sequential Monte Carlo samplers is utilised to simulate QSDs and several novel resampling techniques are proposed to accommodate models with reducible state spaces, with particular focus on preserving particle diversity on discrete spaces. Finally, an approach is considered to estimate eigenvalues associated with QSDs, such as the decay parameter.
This work considers the problem of binary classification: given training data x1, . . ., xn from a certain population, together with associated labels y1,. . ., yn ∈ {0,1}, determine the best label for an element x not among the training data. More specifically, this work considers a variant of the regularized empirical risk functional which is defined intrinsically to the observed data and does not depend on the underlying population. Tools from modern analysis are used to obtain a concise proof of asymptotic consistency as regularization parameters are taken to zero at rates related to the size of the sample. These analytical tools give a new framework for understanding overfitting and underfitting, and rigorously connect the notion of overfitting with a loss of compactness.