We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let a1… ad be a basis of the Lie algebra g of a connected Lie group G and let M be a Lie subgroup of,G. If dx is a non-zero positive quasi-invariant regular Borel measure on the homogeneous space X = G/M and S: X × G → C is a continuous cocycle, then under a rather weak condition on dx and S there exists in a natural way a (weakly*) continuous representation U of G in Lp (X;dx) for all p ε [1,].
Let Ai be the infinitesimal generator with respect to U and the direction ai, for all i ∈ { 1… d}. We consider n–th order strongly elliptic operators H = ΣcαAα with complex coefficients cα. We show that the semigroup S generated by the closure of H has a reduced heat kernel K and we derive upper bounds for k and all its derivatives.
Pointwise bounds for characters of representations of the compact, connected, simple, exceptional Life groups are obtained. It is a classical result that if μ is a central, continuous measure on such a group, then μdimG is absolutely continuous. Our estimates on the size of characters allow us to prove that the exponent, dimension of G, can be replaced by approximately the rank of G. Similar results were obtained earlier for the classical, compact Lie groups.
We study a convolution semigroup satisfying Gaussian estimates on a group G of polynomial volume growth. If Q is a subgroup satisfying a certain geometric condition, we obtain high order regularity estimates for the semigroup in the direction of Q. Applications to heat kernels and convolution powers are given.
We extend an uncertainty principle due to Cowling and Price to threadlike nilpotent Lie groups. This uncertainty principle is a generalization of a classical result due to Hardy. We are thus extending earlier work on Rn and Heisenberg groups.
One way of realizing representations of the Heisenberg group is by using Fock representations, whose representation spaces are Hilbert spaces of functions on complex vector space with inner products associated to points on a Siegel upper half space. We generalize such Fock representations using inner products associated to points on a Hermitian symmetric domain that is mapped into a Seigel upper half space by an equivariant holomorphic map. The representations of the Heisenberg group are then given by an automorphy factor associated to a Kuga fiber variety. We introduce theta functions associated to an equivariant holomorphic map and study connections between such generalized theta functions and Fock representations described above. Furthermore, we discuss Jacobi forms on Hermitian symmetric domains in connection with twisted torus bundles over symmetric spaces.
Pointwise bounds for characters of representations of the classical, compact, connected, simple Lie groups are obtained with which allow us to study the singularity of central measures. For example, we find the minimal integer k such that any continuous orbital measure convolved with itself k times belongs to L2. We also prove that if k = rank G then μ 2k ∈ L1 for all central, continuous measures μ. This improves upon the known classical result which required the exponent to be dimension of the group G.
For a real vector space V acted on by a group K and fixed x and y in V, we consider the problem of finding the minimum (respectively, maximum) distance, relative to a K-invariant convex function on V, between x and elements of the convex hull of the K-orbit of y. We solve this problem in the case where V is a Euclidean space and K is a finite reflection group acting on V. Then we use this result to obtain an analogous result in the case where K is a maximal compact subgroup of a reductive group G with adjoint action on the vector component ρ of a Cartan decomposition of Lie G. Our results generalize results of Li and Tsing and of Cheng concerning distances to the convex hulls of matrix orbits.
We extend an uncertainty principle due to Cowling and Price to Euclidean spaces, Heisenberg groups and the Euclidean motion group of the plane. This uncertainty principle is a generalisation of a classical result due to Hardy. We also show that on the real line this uncertainty principle is almost equivalent to Hardy's theorem.
The Plancherel formula for various semisimple homogeneous spaces with non-reductive stability group is derived within the framework of the Bonnet Plancherel formula for the direct integral decomposition of a quasi-regular representation. These formulas represent a continuation of the author's program to establish a new paradigm for concrete Plancherel analysis on homogeneous spaces wherein the distinction between finite and infinite multiplicity is de-emphasized. One interesting feature of the paper is the computation of the Bonnet nuclear operators corresponding to certain exponential representations (roughly those induced from infinite-dimensional representations of a subgroup). Another feature is a natural realization of the direct integral decomposition over a canonical set of concrete irreducible representations, rather than over the unitary dual.
Let K be a nonarchimedean local field, let L be a separable quadratic extension of K, and let h denote a nondegenerate sesquilinear formk on L3. The Bruhat-Tits building associated with SU3(h) is a tree. This is applied to the study of certain groups acting simply transitively on vertices of the building associated with SL(3, F), F = Q3 or F3((X)).
We study the Cesàro operator on the classical group G and give a necessary and sufficient condition on the index α = α(G) for which the operator is convergent to f(U) for any continuous function f as N → ∞. The result in this paper solves a question posed by Gong in the book Harmonic analysis on classical groups.
Let G be a connected Lie group with Lie algebra g and a1, …, ad an algebraic basis of g. Further let Ai denote the generators of left translations, acting on the Lp-spaces Lp(G; dg) formed with left Haar measure dg, in the directions ai. We consider second-order operators in divergence form corresponding to a quadratic form with complex coefficients, bounded Hölder continuous principal coefficients cij and lower order coefficients ci, c′ii, c0 ∈ L∞ such that the matrix C= (cij) of principal coefficients satisfies the subellipticity condition uniformly over G.
We discuss the hierarchy relating smoothness properties of the coefficients of H with smoothness of the kernel and smoothness of the domain of powers of H on the Lρ-spaces. Moreover, we present Gaussian type bounds for the kernel and its derivatives.
Similar theorems are proved for strongly elliptic operators in non-divergence form for which the principal coefficients are at least once differentiable.
We restrict the metaplectic representation to subgroups G of the symplectic group associated to equivariant holomorphic maps into the Siegel disc. We describe the invariant subspaces of the decomposition, and reduce the problem to the decomposition of a space of ‘harmonic’ polynomials under the action of the maximal compact subgroup of G.
We use the second derivative of intertwining operators to realize a unitary structure for the irreducible subrepresentations in the reducible spherical principal series of U(1, n). These representations can also be realized as the kernels of certain invariant first-order differential operators acting on sections of homogeneous bundles over the hyperboloid (U(1) × U(n))/U(1, n).
The Plancherel formula for the horocycle space, and several generalizations, is derived within the framework of quasi-regular representations which have monomial spectrum. The proof uses only machinery from the Penney-Fujiwara distribution-theoretic technique; no special semisimple harmonic analysis is needed. The Plancherel formulas obtained include the spectral distributions and the intertwining operators that effect the direct integral decomposition of the quasi-regular representation.
A weighted generalization of a p-Sidon set, called an (a, p)-Sidon set, is introduced and studied for infinite, non-abelian, connected, compact groups G. The entire dual object Ĝ is shown never to be central (p − 1, p)-Sidon for 1 ≦ p < 2, nor central (1 + ε, 2)-Sidon for ε > 0. Local (p, p)-Sidon sets are shown to be identical to local Sidon sets. Examples are constructed of infinite non-Sidon sets which are central (2p − 1, p)-Sidon, or (p − 1, p)-Sidon, for 1 < p < 2. Full m-fold FTR sets are proved not to be central (a, 2m/(m + 1))-Sidon for any a > 1.
Lipschitz spaces are important function spaces with relations to Hp spaces and Campanato spaces, the other two important function spaces in harmonic analysis. In this paper we give some characterizations for Lipschitz spaces on compact Lie groups, which are analogues of results in Euclidean spaces.
Let G be a Lie group, Go the connected component of G that contains the identity, and Aut G the group of all topological automorphisms of G. In the case when G/Go is finite and G has a faithful representation, we obtain a necessary and sufficient condition for G so that Aut G has finitely many components in terms of the maximal central torus in Go.
Let (ℋ, G, U) be a continuous representation of the Lie group G by bounded operators g ↦ U(g) on the Banach space ℋ and let (ℋ, g, dU) denote the representation of the Lie algebra g obtained by differentiation. If a1,…, ad′ is a Lie algebra basis of g and Ai = dU(ai) then we examine elliptic regularity properties of the subelliptic operators where (cij) is a real-valued strictly positive-definite matrix and c0, c1,…, cd′ ∈ C. We first introduce a family of Lipschitz subspaces ℋγ, γ > 0, of ℋ which interpolate between the Cn-subspaces of the representation and for which the parameter γ is a continuous measure of differentiability. Secondly, we give a variety of characterizations of the spaces in terms of the semigroup generated by the closure of H and the group representation. Thirdly, for sufficiently large values of Re c0 the fractional powers of the closure of H are defined, and we prove that D()γ⊆γ′, for γ′ < 2γ/r where r is the rank of the basis. Further we establish that 2γ/r is the optimal regularity value and it is attained for unitary representations or for the representations obtained by restricting U to ℋγ. Many other regularity properties are obtained.