To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We carry out timing and spectral studies of the Be/X-ray binary pulsar GX 304-1 using NuStar and XMM-Newton observations. We construct the long-term spin period evolution of the pulsar which changes from a long-term spin-up ($\sim1.3 \times 10^{-13}$ Hz s$^{-1}$) to a long-term spin-down ($\sim-3.4 \times 10^{-14}$ Hz s$^{-1}$) trend during a low luminosity state ($\sim10^{34-35}$ erg s$^{-1}$). A prolonged low luminosity regime ($L_X \sim 10^{34-35}$ erg s$^{-1}$) was detected during 2005–2010 and spanning nearly five years since 2018 December. The XMM-Newton and NuStar spectra can be described with a power law plus blackbody model having an estimated luminosity of $\sim2.5 \times 10^{33}$ and $\sim3.6 \times 10^{33}$ erg s$^{-1}$, respectively. The inferred radius of the blackbody emission is about 100–110 m which suggests a polar-cap origin of this component. From long-term ultraviolet observations of the companion star, an increase in the ultraviolet signatures is detected preceding the X-ray outbursts. The spectral energy distribution of the companion star is constructed which provides a clue of possible UV excess when X-ray outbursts were detected from the neutron star compared to the quiescent phase. We explore plausible mechanisms to explain the long-term spin-down and extended low luminosity manifestation in this pulsar. We find that sustained accretion from a cold disc may explain the prolonged low luminosity state of the pulsar since December 2018 but the pulsar was undergoing normal accretion during the low luminosity period spanning 2005–2010.
MagNetUS is a network of scientists and research groups that coordinates and advocates for fundamental magnetized plasma research in the USA. Its primary goal is to bring together a broad community of researchers and the experimental and numerical tools they use in order to facilitate the sharing of ideas, resources and common tasks. Discussed here are the motivation and goals for this network and details of its formation, history and structure. An overview of associated experimental facilities and numerical projects is provided, along with examples of scientific topics investigated therein. Finally, a vision for the future of the organization is given.
We present PCFTL (Probabilistic CounterFactual Temporal Logic), a new probabilistic temporal logic for the verification of Markov Decision Processes (MDP). PCFTL introduces operators for causal inference, allowing us to express interventional and counterfactual queries. Given a path formula ϕ, an interventional property is concerned with the satisfaction probability of ϕ if we apply a particular change I to the MDP (e.g., switching to a different policy); a counterfactual formula allows us to compute, given an observed MDP path τ, what the outcome of ϕ would have been had we applied I in the past and under the same random factors that led to observing τ. Our approach represents a departure from existing probabilistic temporal logics that do not support such counterfactual reasoning. From a syntactic viewpoint, we introduce a counterfactual operator that subsumes both interventional and counterfactual probabilities as well as the traditional probabilistic operator. This makes our logic strictly more expressive than PCTL⋆. The semantics of PCFTL rely on a structural causal model translation of the MDP, which provides a representation amenable to counterfactual inference. We evaluate PCFTL in the context of safe reinforcement learning using a benchmark of grid-world models.
We solve ‘half’ the problem of finding three-dimensional quasisymmetric magnetic fields that do not necessarily satisfy magnetohydrostatic force balance. This involves determining which hidden symmetries are admissible as quasisymmetries, and then showing explicitly how to construct quasisymmetric magnetic fields given an admissible symmetry. The admissibility conditions take the form of a system of overdetermined nonlinear partial differential equations involving second derivatives of the symmetry's infinitesimal generator.
This textbook provides an accessible introduction to quantum field theory and the Standard Model of particle physics. It adopts a distinctive pedagogical approach with clear, intuitive explanations to complement the mathematical exposition. The book begins with basic principles of quantum field theory, relating them to quantum mechanics, classical field theory, and statistical mechanics, before building towards a detailed description of the Standard Model. Its concepts and components are introduced step by step, and their dynamical roles and interactions are gradually established. Advanced topics of current research are woven into the discussion and key chapters address physics beyond the Standard Model, covering subjects such as axions, technicolor, and Grand Unified Theories. This book is ideal for graduate courses and as a reference and inspiration for experienced researchers. Additional material is provided in appendices, while numerous end-of-chapter problems and quick questions reinforce the understanding and prepare students for their own research.
Adopting a unified mathematical framework, this textbook gives a comprehensive derivation of the rules of continuum physics, describing how the macroscopic response of matter emerges from the underlying discrete molecular dynamics. Covered topics include elasticity and elastodynamics, electromagnetics, fluid dynamics, diffusive transport in fluids, capillary physics and thermodynamics. By also presenting mathematical methods for solving boundary-value problems across this breadth of topics, readers develop understanding and intuition that can be applied to many important real-world problems within the physical sciences and engineering. A wide range of guided exercises are included, with accompanying answers, allowing readers to develop confidence in using the tools they have learned. This book requires an understanding of linear algebra and vector calculus and will be a valuable resource for undergraduate and graduate students in physics, chemistry, engineering and geoscience.
Turbulent flows in three dimensions are characterized by the transport of energy from large to small scales through the energy cascade. Since the small scales are the result of the nonlinear dynamics across the scales, they are often thought of as universal and independent of the large scales. However, as famously remarked by Landau, sufficiently slow variations of the large scales should nonetheless be expected to impact small-scale statistics. Such variations, often termed large-scale intermittency, are pervasive in experiments and even in simulations, while differing from flow to flow. Here, we evaluate the impact of temporal large-scale fluctuations on velocity, vorticity and acceleration statistics by introducing controlled sinusoidal variations of the energy injection rate into direct numerical simulations of turbulence. We find that slow variations can have a strong impact on flow statistics, raising the flatness of the considered quantities. We discern three contributions to the increased flatness, which we model by superpositions of statistically stationary flows. Overall, our work demonstrates how large-scale intermittency needs to be taken into account in order to ensure comparability of statistical results in turbulence.
The interaction between planar incident shocks and cylindrical boundary layers is prevalent in missiles equipped with inverted inlets, which typically leads to substantial three-dimensional flow separation and the formation of vortical flow. This study utilizes wind-tunnel experiments and theoretical analysis to elucidate the shock structure, surface topology and pressure distributions induced by a planar shock with finite width impinging on a cylinder wall at Mach 2.0. In the central region, a refraction phenomenon occurs as the transmitted shock bends within the boundary layer, generating a series of compression waves that coalesce into a shock, forming a ‘shock triangle’ structure. As the incident shock propagates backward along both sides, it gradually evolves into a Mach stem, where the transmitted shock refracts the expansion wave. The incident shock interacts with the boundary layer, resulting in the formation of a highly swept separation region that yields a pair of counter-rotating horseshoe-like vortices above the separation lines. These vortices facilitate the accumulation of low-energy fluid on both sides. Although the interaction of the symmetry plane aligns with free-interaction-theory, the separation shock angle away from the centre significantly deviates from the predicted value owing to the accumulation of low-energy fluids. The primary separation line and pressure distribution jointly exhibit an elliptical similarity on the cylindrical surface. Furthermore, the potential unsteady behaviour is assessed, and the Strouhal number of the low-frequency oscillation is found to be 0.0094, which is insufficient to trigger significant alterations in the flow field structure.
Green water loads on prismatic obstacles (representing topside structures) mounted on the raised deck of a simplified vessel are investigated using computational fluid dynamics simulations and physical model testing with emphasis on examining different structure shapes, orientation angles and relative structure size. For each scenario investigated, several flow features are identified that characterize the green water interaction with the structure and influence loads, namely delayed flow diversion, formation of a vertical jet, scattered wave formation and the development of complex wake patterns. Comparing across structures, these interactions are more pronounced for blunt objects, and the associated force impulse is larger. For example, a cube with flow at normal incidence is found to experience approximately twice the force impulse of a circular cylinder of the same projected area. Equally, rotation of the cube leads to reduced run-up height and streamwise force on the structure. To explain these trends, a theoretical model based on Newtonian flow theory is adopted. This model provides an estimate of the streamwise force exerted on obstacles in high-Froude-number flows and shows good agreement with the numerical results when the flow is supercritical, shallow (small water depth relative to structure width) and the structure is tall (large structure height relative to water depth). Despite some limitations, the model should provide an efficient force prediction tool for practical use in design.
Asymptotic giant branch (AGB) stars play a significant role in our understanding of the origin of the elements. They contribute to the abundances of C, N, and approximately 50% of the abundances of the elements heavier than iron. An aspect often neglected in studies of AGB stars is the impact of a stellar companion on AGB stellar evolution and nucleosynthesis. In this study, we update the stellar abundances of AGB stars in the binary population synthesis code binary_c and calibrate our treatment of the third dredge-up using observations of Galactic carbon stars. We model stellar populations of low- to intermediate-mass stars at solar-metallicity and examine the stellar wind contributions to C, N, O, Sr, Ba, and Pb yields at binary fractions between 0 and 1. For a stellar population with a binary fraction of 0.7, we find $\sim$20–25% less C and s-process elements ejected than from a population composed of only single stars, and we find little change in the N and O yields. We also compare our models with observed abundances from Ba stars and find our models can reproduce most Ba star abundances, but our population estimates a higher frequency of Ba stars with a surface [Ce/Y] > $+0.2\,$dex. Our models also predict the rare existence of Ba stars with masses $ \gt 10\,\textrm{M}_{\odot}$.
Throughout all the domains of life, and even among the co-existing viruses, RNA molecules play key roles in regulating the rates, duration, and intensity of the expression of genetic information. RNA acts at many different levels in playing these roles. Trans-acting regulatory RNAs can modulate the lifetime and translational efficiency of transcripts with which they pair to achieve speedy and highly specific recognition using only a few components. Cis-acting recognition elements, covalent modifications, and changes to the termini of RNA molecules encode signals that impact transcript lifetime, translation efficiency, and other functional aspects. RNA can provide an allosteric function to signal state changes through the binding of small ligands or interactions with other macromolecules. In either cis or trans, RNA can act in conjunction with multi-enzyme assemblies that function in RNA turnover, processing and surveillance for faulty transcripts. These enzymatic machineries have likely evolved independently in diverse life forms but nonetheless share analogous functional roles, implicating the biological importance of cooperative assemblies to meet the exact demands of RNA metabolism. Underpinning all the RNA-mediated processes are two key aspects: specificity, which avoids misrecognition, and speedy action, which confers timely responses to signals. How these processes work and how aberrant RNA species are recognised and responded to by the degradative machines are intriguing puzzles. We review the biophysical basis for these processes. Kinetics of assembly and multivalency of interacting components provide windows of opportunity for recognition and action that are required for the key regulatory events. The thermodynamic irreversibility of RNA-mediated regulation is one emergent feature of biological systems that may help to account for the apparent specificity and optimal rates.
Quantum learning models hold the potential to bring computational advantages over the classical realm. As powerful quantum servers become available on the cloud, ensuring the protection of clients’ private data becomes crucial. By incorporating quantum homomorphic encryption schemes, we present a general framework that enables quantum delegated and federated learning with a computation-theoretical data privacy guarantee. We show that learning and inference under this framework feature substantially lower communication complexity compared with schemes based on blind quantum computing. In addition, in the proposed quantum federated learning scenario, there is less computational burden on local quantum devices from the client side, since the server can operate on encrypted quantum data without extracting any information. We further prove that certain quantum speedups in supervised learning carry over to private delegated learning scenarios employing quantum kernel methods. Our results provide a valuable guide toward privacy-guaranteed quantum learning on the cloud, which may benefit future studies and security-related applications.
The initial mass function (IMF) is a construct that describes the distribution of stellar masses for a newly formed population of stars. It is a fundamental element underlying all of star and galaxy formation and has been the subject of extensive investigation for more than 60 yr. In the past few decades, there has been a growing, and now substantial, body of evidence supporting the need for a variable IMF. In this light, it is crucial to investigate the IMF’s characteristics across different spatial scales and to understand the factors driving its variability. We make use of spatially resolved spectroscopy to examine the high-mass IMF slope of star-forming galaxies within the SAMI survey. By applying the Kennicutt method and stellar population synthesis models, we estimated both the spaxel-resolved ($\alpha_{res}$) and galaxy-integrated ($\alpha_{int}$) high-mass IMF slopes of these galaxies. Our findings indicate that the resolved and integrated IMF slopes exhibit a near 1:1 relationship for $\alpha_{int}\gtrsim -2.7$. We observe a wide range of $\alpha_{res}$ distributions within galaxies. To explore the sources of this variability, we analyse the relationships between the resolved and integrated IMF slopes and both the star formation rate (SFR) and SFR surface density ($\Sigma_{\textrm{SFR}}$). Our results reveal a strong correlation where flatter/steeper slopes are associated with higher/lower SFR and $\Sigma_{\textrm{SFR}}$. This trend is qualitatively similar for resolved and global scales. Additionally, we identify a mass dependency in the relationship with SFR, though none was found in the relation between the resolved slope and $\Sigma_{\textrm{SFR}}$. These findings suggest an scenario where the formation of high-mass stars is favoured in regions with more concentrated star formation. This may be a consequence of the reduced fragmentation of molecular clouds, which nonetheless accrete more material.
With ESA's upcoming JUpiter ICy moons Explorer (JUICE) mission to Jupiter and Ganymede, this book provides a fascinating and timely summary of our current knowledge about Ganymede: the largest moon in the Solar System and the only one with an intrinsic magnetic field. Written by a team of multidisciplinary experts spanning geology, space physics and habitability, it provides up-to-date knowledge about Ganymede. The history of its discovery, formation, surface, atmosphere and space environment are discussed in accessible language and supported by the enormous amount of data obtained by Galileo, the Hubble Space Telescope and earlier missions. The latest surface maps of Ganymede are also presented, providing an invaluable reference for graduate students and researchers working in planetary science.
We have conducted a widefield, wideband, snapshot survey using the Australian SKA Pathfinder (ASKAP) referred to as the Rapid ASKAP Continuum Survey (RACS). RACS covers $\approx 90$% of the sky, with multiple observing epochs in three frequency bands sampling the ASKAP frequency range of 700–1 800 MHz. This paper describes the third major epoch at 1 655.5 MHz, RACS-high, and the subsequent imaging and catalogue data release. The RACS-high observations at 1 655.5 MHz are otherwise similar to the previously released RACS-mid (at 1 367.5 MHz) and were calibrated and imaged with minimal changes. From the 1 493 images covering the sky up to declination $\approx +48^\circ$, we present a catalogue of 2 677 509 radio sources. The catalogue is constructed from images with a median root-mean-square noise of $\approx 195$$\unicode{x03BC}$Jy PSF$^{-1}$ (point-spread function) and a median angular resolution of $11{\stackrel{\prime\prime}{\raise-0pt\hbox{.}}}8 \times 8{\stackrel{\prime\prime}{\raise-0pt\hbox{.}}}1$. The overall reliability of the catalogue is estimated to be 99.18%, and we find a decrease in reliability as angular resolution improves. We estimate the brightness scale to be accurate to 10%, and the astrometric accuracy to be within $\approx 0{\stackrel{\prime\prime}{\raise-0pt\hbox{.}}}6$ in right ascension and $\approx 0{\stackrel{\prime\prime}{\raise-0pt\hbox{.}}}7$ in declination after correction of a systematic declination-dependent offset. All data products from RACS-high, including calibrated visibility datasets, images from individual observations, full-sensitivity mosaics, and the all-sky catalogue are available at the CSIRO ASKAP Science Data Archive.
The generation of an autoresonantly phase-locked high-amplitude plasma waves to the chirped beat frequency of two driving lasers is studied in two dimensions using particle-in-cell simulations. The two-dimensional plasma and laser parameters correspond to those that optimized the plasma wave amplitude in one-dimensional simulations. Near the start of autoresonant locking, the two-dimensional simulations appear similar to one-dimensional particle-in-cell results (Luo et al., Phys. Rev. Res., vol. 6, 2024, p. 013338) with plasma wave amplitudes above the Rosenbluth–Liu limit. Later, just below wave breaking, the two-dimensional simulation exhibits a Weibel-like instability and eventually laser beam filamentation. These limit the coherence of the plasma oscillation after the peak plasma wave field is obtained. In spite of the reduction of spatial coherence of the accelerating density structure, the acceleration of self-injected electrons in the case studied remains at $70\,\%$ to $80\,\%$ of that observed in one dimension. Other effects such as plasma wave bowing are discussed.
We present a novel scheme for rapid quantitative analysis of debris generated during experiments with solid targets following relativistic laser–plasma interaction at high-power laser facilities. Results are supported by standard analysis techniques. Experimental data indicate that predictions by available modelling for non-mass-limited targets are reasonable, with debris of the order of hundreds of μg per shot. We detect for the first time two clearly distinct types of debris emitted from the same interaction. A fraction of the debris is ejected directionally, following the target normal (rear and interaction side). The directional debris ejection towards the interaction side is larger than on the side of the target rear. The second type of debris is characterized by a more spherically uniform ejection, albeit with a small asymmetry that favours ejection towards the target rear side.
We have carried out a detailed investigation of eclipsing binary star NT Aps using high cadence photometric observations from the TESS satellite and time-series spectra from EFOSC2 at ESO’s New Technology Telescope.a We have, for the first time, determined precise system parameters for this W UMa-type late-type contact binary. Our analysis indicates that the system is composed of two solar-like stars with mass ratio of $q=0.31$ and orbital period of 0.29475540 $\pm$ 0.00000035 days. These values are typical for common envelope contact binaries. However, the system does not exhibit strong magnetic activity in the form of frequent flaring and large starspots, even if large flare rates have been earlier predicted for this system. This lack of strong magnetic activity further strengthens the earlier indications that the contact binaries are less magnetically active than those of detached chromospherically active binaries with similar parameters.
Echoing the Somerset proverb quoted by John Ray, we can state that if we have only one celestial body, that is too few objects to study celestial dynamics. A system with two bodies, as we saw in the previous chapter, contains interesting physics. But what about a three-body system? We might conclude, considering the possible complexity of such a system, that it contains too many objects to be tractable.
Sir James Jeans Always says what he means; He is really perfectly serious About the Universe being Mysterious. E. Clerihew Bentley (1875–1956) Punch, vol. 196, issue 5100, p. 39 [1939 Jan 11]