To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The linear collisionless plasma response to a zonal-density perturbation in quasisymmetric stellarators is studied, including the geodesic-acoustic-mode oscillations and the Rosenbluth–Hinton residual flow. While the geodesic-acoustic-mode oscillations in quasiaxisymmetric configurations are similar to tokamaks, they become non-existent in quasi-helically symmetric configurations when the effective safety factor in helical-angle coordinates is small. Compared with concentric-circular tokamaks, the Rosenbluth–Hinton residual is also found to be multiplied by a geometric factor $\mathcal {C}$ that arises from the flux-surface-averaged classical polarization. Using the near-axis-expansion framework, we derive an analytic expression for $\mathcal {C}$, which varies significantly among different configurations. These analytic results are compared with numerical simulation results from the global gyrokinetic particle-in-cell code GTC, and good agreement with the theoretical Rosenbluth–Hinton residual level is achieved when the quasisymmetry error is small enough.
During a rainfall event, water infiltrates into the ground where it accumulates in porous rocks. This accumulation pushes the underlying groundwater towards neighbouring streams, where it runs to the sea. After the rain has stopped, the aquifer gradually releases its excess water, as the water table relaxes, until the next rain. In the absence of recharge, the water table would eventually reach its horizontal equilibrium position. The volume of groundwater stored above this level, which we call the active volume, sustains the river between two rainfall events. In this article, we use an experimental aquifer recharged by artificial rain to investigate how this active volume depends on the rainfall rate. Restricting our analysis to the steady-state regime, wherein the discharge into the stream balances rainfall, we explore a broad range of rainfall rates, for which the water table deforms significantly. We find that the active volume of water stored in the aquifer decreases with its depth. Using conformal mapping, we derive the flow equations and develop a numerical procedure that accounts for the active volume of groundwater in our experiments. In the case of an infinitely deep aquifer, the problem admits a closed-form solution, which provides a satisfying estimate of the active volume when the aquifer's depth is at least half its width. In the general case, a rougher estimate results from the energy balance of the dissipative groundwater flow.
We introduce adaptive particle refinement for compressible smoothed particle hydrodynamics (SPH). SPH calculations have the natural advantage that resolution follows mass, but this is not always optimal. Our implementation allows the user to specify local regions of the simulation that can be more highly resolved. We test our implementation on practical applications including a circumbinary disc, a planet embedded in a disc, and a flyby. By comparing with equivalent globally high-resolution calculations, we show that our method is accurate and fast, with errors in the mass accreted onto sinks of less than 9% and speed ups of 1.07–6.62$\times$ for the examples shown. Our method is adaptable and easily extendable, for example, with multiple refinement regions or derefinement.
Allostery describes the ability of biological macromolecules to transmit signals spatially through the molecule from an allosteric site – a site that is distinct from orthosteric binding sites of primary, endogenous ligands – to the functional or active site. This review starts with a historical overview and a description of the classical example of allostery – hemoglobin – and other well-known examples (aspartate transcarbamoylase, Lac repressor, kinases, G-protein-coupled receptors, adenosine triphosphate synthase, and chaperonin). We then discuss fringe examples of allostery, including intrinsically disordered proteins and inter-enzyme allostery, and the influence of dynamics, entropy, and conformational ensembles and landscapes on allosteric mechanisms, to capture the essence of the field. Thereafter, we give an overview over central methods for investigating molecular mechanisms, covering experimental techniques as well as simulations and artificial intelligence (AI)-based methods. We conclude with a review of allostery-based drug discovery, with its challenges and opportunities: with the recent advent of AI-based methods, allosteric compounds are set to revolutionize drug discovery and medical treatments.
The current study characterizes the attenuation of instabilities in steady and unsteady shear layers by investigating shear-thinning flows downstream of a confined axisymmetric sudden expansion. Flow fields were captured using particle image velocimetry. Tested fluids exhibited approximate power-law indices of 1, 0.81, 0.61 and 0.47 and measurements were performed at mean throat-based Reynolds numbers of ${Re_m} = 4800$ and 14 400. Unsteady flows were tested at a Strouhal number and amplitude-to-mean velocity ratio of $St = 0.15$ and $\lambda = 0.95$, respectively. For unsteady shear layers, shear-layer roll-up regardless of shear-thinning strength was evidenced by collapse of average circulation over time. For steady shear layers, consistent shear-layer behaviour regardless of shear-thinning strength was evidenced by similar shear-layer trajectories and by growth rates in vorticity thickness. However, vorticity fields of the unsteady and steady shear layers, standard deviations of shear-layer trajectory, thickness of steady shear layers and Reynolds shear-stress spectra of the steady shear layers reveal an attenuation of shear-layer instabilities not captured by Reynolds number. Specifically, shear-layer instabilities exhibit increased diffusion with increasing shear-thinning strength and, in the case of steady shear layers, shear-thinning strength is shown to promote shear-layer stabilization. Also, evidenced by vorticity fields and through Reynolds shear-stress spectra, instabilities frequently coalesce into large rollers, a result that would suggest the presence of an inverse eddy cascade. The behaviour of shear-thinning fluids is shown to stabilize shear layers through attenuating shear-layer instabilities, complementing observations from previous studies showing how shear-thinning fluids promote turbulence in the dominant flow direction.
Galaxy morphology in stellar light can be described by a series of ‘non-parametric’ or ‘morphometric’ parameters, such as concentration-asymmetry-smoothness, Gini, $M_{20}$, and Sérsic fit. These parameters can be applied to column density maps of atomic hydrogen (H 1). The H 1 distribution is susceptible to perturbations by environmental effects, for example, intergalactic medium pressure and tidal interactions. Therefore, H 1 morphology can potentially identify galaxies undergoing ram-pressure stripping or tidal interactions. We explore three fields in the WALLABY Pilot H 1 survey and identify perturbed galaxies based on a k-nearest neighbour (kNN) algorithm using an H 1 morphometric feature space. For training, we used labelled galaxies in the combined NGC 4808 and NGC 4636 fields with six H 1 morphometrics to train and test a kNN classifier. The kNN classification is proficient in classifying perturbed galaxies with all metrics – accuracy, precision, and recall – at 70–80%. By using the kNN method to identify perturbed galaxies in the deployment field, the NGC 5044 mosaic, we find that in most regards, the scaling relations of perturbed and unperturbed galaxies have similar distribution in the scaling relations of stellar mass versus star formation rate and the Baryonic Tully–Fisher relation, but the H 1 and stellar mass relation flatter than of the unperturbed galaxies. Our results for NGC 5044 provide a prediction for future studies on the fraction of galaxies undergoing interaction in this catalogue and to build a training sample to classify such galaxies in the full WALLABY survey.
We present the results of searching for new dwarf galaxies in the Local Volume. We found 40 satellite candidates in the double-virial-radius regions of 20 Milky Way-like and Large Magellanic Cloud (LMC)-like galaxies in the southern sky using DESI Legacy Imaging Surveys, 10 of which were known but not clearly associated with the Local Volume previously. Among the 40 satellite candidates, 8 are supposed members of the NGC 6744 group and 13 are located in the vicinity of the Sombrero galaxy. Based on seven companions to the giant spiral galaxy NGC 6744 with measured radial velocities, we estimate that the total mass of the group is $M_T = (1.88\pm0.71)\times 10^{12}\,\mathrm{M}_{\odot}$ and the total mass-to-K-luminosity ratio $M_T/L_K = (16.1\pm6.0) \mathrm{M}_{\odot}/\mathrm{L}_{\odot}$. We reproduce a distribution of 68 early- and late-type galaxies in the Local Volume situated around the Sombrero, noting their strong morphological segregation and also the presence of a foreground diffuse association of dwarf galaxies at 8 degrees to SE from the Sombrero.
The bevelled nozzle is a promising noise control approach and has been tested to suppress the noise levels in supersonic circular jets, but not in rectangular jets so far. In this study, implicit large-eddy simulations are performed to analyse the noise control of supersonic rectangular jets with single- and double-bevelled nozzles. Three nozzle pressure ratios ($NPR = 2.3$, 3.0 and 5.0) are considered to form two over-expanded cold jets and one under-expanded cold jet, exhausted from a baseline convergent–divergent rectangular nozzle with an aspect ratio of 2.0. Results show that, with the increase of $NPR$, the oscillation of the jet plume is switched from a symmetrical mode to a flapping mode (preferential in the minor-axis plane), then to a helical mode, together with a reduction of the screech frequency. The amplitude of the screech tone is the strongest in the flapping jet, and the turbulent mixing noise is the most prominent in the helically oscillating jet. The single-bevelled nozzle induces asymmetric shock-cell structures and deflects the jet plumes, and the double-bevelled nozzle primarily enables the enhancement of the shear-layer mixing and shortens the lengths of the jet potential cores. With the bevelled nozzles, the gross thrusts of the baseline nozzle are increased by $0.05 \sim 7.38$ %. Details on the characteristics of far-field noise in the jets with/without the bevel cuts and their noise control mechanisms are discussed using the Ffowcs Williams–Hawkings acoustic analogy, dynamic mode decomposition and spatio-temporal Fourier transformation. Results suggest that the noise control has a close relationship with the destruction of well-organized coherent structures and the suppression of upstream-propagating guided-jet modes, which interrupt the feedback mechanism accounting for the generation of screech tones in the supersonic rectangular jets.
In this paper, we study the rapid transition in Richtmyer–Meshkov instability (RMI) with reshock through three-dimensional double-layer swirling vortex rings. The rapid transition in RMI with reshock has an essential influence on the evolution of supernovas and the ignition of inertial confinement fusion, which has been confirmed in numerical simulations and experiments in shock-tube and high-energy-density facilities over the past few years. Vortex evolution has been confirmed to dominate the late-time nonlinear development of the perturbed interface. However, few studies have investigated the three-dimensional characteristics and nonlinear interactions among vortex structures during the transition to turbulent flows. The coexistence of co-rotating and counter-rotating vortices is hypothesized to induce successive large-scale strain fields, which are the main driving sources for rapid development. The three-dimensional effect is reflected in the presence of local swirling motion in the azimuthal direction, and it decreases the translation velocity of a vortex ring. Large-, middle- and small-scale strain fields are employed to describe the development process of RMI with reshock, e.g. vorticity deposited by the reshock, formation of the coexistence of the co-rotating and counter-rotating vortices, iterative cascade under the amplification of the strain fields and viscous dissipation to internal energy. This provides theoretical suggestions for designing practical applications, such as the estimation of the hydrodynamic instability and mixing during the late-time acceleration phase of the inertial confinement fusion.
We report a comprehensive study of the wake of a porous disc, the design of which has been modified to incorporate a swirling motion at an inexpensive cost. The swirl intensity is passively controlled by varying the internal disc geometry, i.e. the pitch angle of the blades. A swirl number is introduced to characterise the competition between the linear (drag) and the azimuthal (swirl) momenta on the wake recovery. Assuming that swirl dominates the near wake and non-equilibrium turbulence theory applies, new scaling laws of the mean wake properties are derived. To assess these theoretical predictions, an in-depth analysis of the aerodynamics of these original porous discs has been conducted experimentally. It is found that, at the early stage of wake recovery, the swirling motion induces a low-pressure core, which controls the mean velocity deficit properties and the onset of self-similarity. The measurements collected in the swirling wake of the porous discs support the new scaling laws proposed in this work. Finally, it is shown that, as far as swirl is injected in the wake, the characteristics of the mean velocity deficit profiles match very well those of both laboratory-scale and real-scale wind-turbine data extracted from the literature. Overall, our results emphasise that, by setting the initial conditions of the wake recovery, swirl is a key ingredient to be taken into account in order to faithfully replicate the mean wake of wind turbines.
In this work, we confirm a Pr3+:LiYF4 pulsed laser with high power and high energy at 639 nm based on the acousto-optic cavity dumping technique. The maximum average output power, narrowest pulse width, highest pulse energy and peak power of the pulsed laser at a repetition rate of 0.1 kHz are 532 mW, 112 ns, 5.32 mJ and 47.5 kW, respectively. A 639 nm pulsed laser with such high pulse energy and peak power has not been reported previously. Furthermore, we obtain a widely tunable range of repetition rates from 0.1 to 5000 kHz. The diffracted beam quality factors M2 are 2.18 (in the x direction) and 2.04 (in the y direction). To the best of our knowledge, this is the first time that a cavity-dumped all-solid-state pulsed laser in the visible band has been reported. This work provides a promising method for obtaining high-performance pulsed lasers.
We identify forcing mechanisms that separately amplify subsonic and supersonic features obtained from a linearised Navier–Stokes based model for compressible parallel boundary layers. Resolvent analysis is used to analyse the linear model, where the nonlinear terms of the linearised equations act as a forcing to the linear terms. Considering subsonic modes, only the solenoidal component of the forcing to the momentum equations amplify these modes. When considering supersonic modes, we find that these are pressure fluctuations that radiate into the free stream. Within the free stream, these modes closely follow the trends of inviscid Mach waves. There are two distinct forcing mechanisms that amplify the supersonic modes: (i) the ‘direct route’, where the forcing to the continuity and energy equations and the dilatational component of the forcing to the momentum equations directly force the mode; and (ii) the ‘indirect route’, where the solenoidal component of the forcing to the momentum equations force a response in wall-normal velocity, and this wall-normal velocity in turn forces the supersonic mode. A majority of the supersonic modes considered are dominantly forced by the direct route. However, when considering Mach waves that are, like in direct numerical simulations, forced from the buffer layer of the flow, the indirect route of forcing becomes significant. We find that these observations are also valid for a streamwise developing boundary layer. These results are consistent with, and extend, the observations in the literature regarding the solenoidal and dilatational components of velocity in compressible turbulent wall-bounded flows.
Premixed hydrogen flames are prone to thermodiffusive instabilities due to strong differential diffusion effects. Reproducing these instabilities in large eddy simulations (LES), where their effects are only partially resolved, is challenging. Combustion models that account for differential diffusion effects have been developed for laminar flames, but to use them in LES, models for the turbulence/flame subfilter interactions are required. Modelling of the subfilter interactions is particularly challenging as instabilities synergistically interact with turbulence resulting in a strong enhancement of the turbulent flame speed. In this work, a combustion model for LES, which accounts for thermodiffusive instabilities and their interactions with turbulence, is presented. In the first part, an a priori analysis based on a direct numerical simulation (DNS) of a turbulent hydrogen/air jet flame is discussed. Progress variable, progress variable variance and mixture fraction are rigorously identified as suitable model input parameters, and an LES combustion model based on pre-tabulated unstretched premixed flamelets with varying equivalence ratio is formulated. Subfilter closure is achieved via a presumed probability density function and a significant reduction of modelling errors is achieved with the presented model. In the second part, LES of the DNS configuration are performed for an a posteriori analysis. The presented combustion model shows significant improvements in predicting the flame length and local phenomena, such as super-adiabatic temperature, compared with combustion models that either neglect differential diffusion effects or consider these effects but neglect the subfilter closure. Two variants of the model formulation with a water- or hydrogen-based progress variable have been tested, yielding overall similar predictions.
With wide-field phased array feed technology, the Australian Square Kilometre Array Pathfinder (ASKAP) is ideally suited to search for seemingly rare radio transient sources that are difficult to discover previous-generation narrow-field telescopes. The Commensal Real-time ASKAP Fast Transient (CRAFT) Survey Science Project has developed instrumentation to continuously search for fast radio transients (duration $\lesssim$ 1 s) with ASKAP, with a particular focus on finding and localising fast radio bursts (FRBs). Since 2018, the CRAFT survey has been searching for FRBs and other fast transients by incoherently adding the intensities received by individual ASKAP antennas, and then correcting for the impact of frequency dispersion on these short-duration signals in the resultant incoherent sum (ICS) in real time. This low-latency detection enables the triggering of voltage buffers, which facilitates the localisation of the transient source and the study of spectro-polarimetric properties at high time resolution. Here we report the sample of 43 FRBs discovered in this CRAFT/ICS survey to date. This includes 22 FRBs that had not previously been reported: 16 FRBs localised by ASKAP to $\lesssim 1$ arcsec and 6 FRBs localised to $\sim 10$ arcmin. Of the new arcsecond-localised FRBs, we have identified and characterised host galaxies (and measured redshifts) for 11. The median of all 30 measured host redshifts from the survey to date is $z=0.23$. We summarise results from the searches, in particular those contributing to our understanding of the burst progenitors and emission mechanisms, and on the use of bursts as probes of intervening media. We conclude by foreshadowing future FRB surveys with ASKAP using a coherent detection system that is currently being commissioned. This will increase the burst detection rate by a factor of approximately ten and also the distance to which ASKAP can localise FRBs.
Topological properties of the spectrum of shallow-water waves on a rotating spherical body are established. Particular attention is paid to spectral flow, i.e. the modes whose frequencies transit between the Rossby and inertia–gravity wavebands as the zonal wavenumber is varied. Organising the modes according to the number of zeros of their meridional velocity, we conclude that the net number of modes transiting between the shallow-water wavebands on the sphere is null, in contrast to the Matsuno spectrum. This difference can be explained by a miscount of zeros under the $\beta$-plane approximation. We corroborate this result with the analysis of Delplace et al. (Science, vol. 358, 2017, pp. 1075–1077) by showing that the curved metric discloses a pair of degeneracy points in the Weyl symbol of the wave operator, non-existent under the $\beta$-plane approximation, each of them bearing a Chern number of $-1$.
Turbulence self-organization is studied in the flux-driven regime by means of the reduced model Tokam1D. Derived in the electrostatic and isothermal limit but keeping finite electron and ion temperatures, it features two instabilities that are suspected to dominate turbulent transport at the edge of L-mode tokamak plasmas: interchange (a reduced version of the resistive ballooning modes) and collisional drift waves, governed respectively by an effective gravity parameter $g$ and the adiabaticity parameter $C$. The usual properties of these two instabilities are recovered in the linear regime. The nonlinear study focuses on the self-organization of collisional drift-wave turbulence at $g=0$. It is found that the energy stored in zonal flows (ZFs) decreases smoothly at small $C$ due to the reduction of both electric and diamagnetic stresses. Conversely to gradient-driven simulations, no sharp collapse is observed due to the self-consistent evolution of the equilibrium density profile. The ZFs are found to structure into staircases at small and large $C$. These structures exhibit a rich variety of dynamics but are found to be robust to large perturbations. Their nucleation is found to be critically governed by the phase dynamics. Finally, the staircase structures are lost in the gradient-driven regime, when the system is prevented from storing turbulent energy into the equilibrium density (pressure) profile.
We demonstrate a high-peak-power master oscillator power amplifier burst-mode laser system that generates microsecond burst duration pulses at 355 nm with a GHz-adjustable intra-burst pulse frequency. In the fiber seed, a high-bandwidth electro-optic modulator is employed to modulate a continuous-wave (CW) laser into a pulse train at GHz frequency. To acquire a microsecond rectangular burst pulse envelope, two acousto-optic modulators are used to chop the CW pulse train and generate a pre-compensation burst envelope. A three-stage neodymium-doped yttrium aluminum garnet amplifier boosts the burst-mode fiber seed’s burst energy of 1.65 J at 1064 nm. To achieve a high-power ultraviolet (UV) burst-mode laser, sum frequency generation in a LiB3O5 crystal is employed to convert the wavelength, achieving over 300 kW of peak power at 1.15 μs/10 Hz. The intra-burst pulse frequency of the UV burst laser can be adjustable from 1 to 10 GHz with a sinusoidal waveform. To the best of our knowledge, this paper represents the highest reported microsecond UV burst-mode laser in terms of output energy and peak power with the GHz-adjustable intra-burst frequency. The high-power microsecond UV burst-mode pulse laser can be directly used as a light-driven source in large-bandwidth/high-power microwave photonic systems, providing a long pulse width and high peak power laser while significantly improving the system’s multi-parameter adjustment capability and adaptability.
It is somewhat implicit that the readers are familiar with the first course on solid state physics, which mainly deals with electronic systems and teaches us how to distinguish between different forms of matter, such as metals, semiconductors and insulators. An elementary treatise on band structure is introduced in this regard, and in most cases, interacting phenomena, such as magnetism and superconductivity, are taught. The readers are encouraged to look at the classic texts on solid state physics, such as the ones by Kittel, Ashcroft and Mermin.
As a second course, or an advanced course on the subject, more in-depth study of condensed matter physics and its applications to the physical properties of various materials have found a place in the undergraduate curricula for a century or even more. The perspective on teaching the subject has remained unchanged during this period of time. However, the recent developments over the last few decades require a new perspective on teaching and learning about the subject. Quantum Hall effect is one such discovery that has influenced the way condensed matter physics is taught to undergraduate students. The role of topology in condensed matter systems and the fashion in which it is interwoven with the physical observables need to be understood for deeper appreciation of the subject. Thus, to have a quintessential presentation for the undergraduate students, in this book, we have addressed selected topics on the quantum Hall effect, and its close cousin, namely topology, that should comprehensively contribute to the learning of the topics and concepts that have emerged in the not-so-distant past. In this book, we focus on the transport properties of two-dimensional (2D) electronic systems and solely on the role of a constant magnetic field perpendicular to the plane of a electron gas. This brings us to the topic of quantum Hall effect, which is one of the main verticals of the book. The origin of the Landau levels and the passage of the Hall current through edge modes are also discussed. The latter establishes a quantum Hall sample to be the first example of a topological insulator. Hence, our subsequent focus is on the subject topology and its application to quantum Hall systems and in general to condensed matter physics. Introducing the subject from a formal standpoint, we discuss the band structure and topological invariants in 1D.
In this chapter, we shall discuss the interplay of symmetry and topology that are essential in understanding the topological protection rendered by the inherent symmetries and how the topological invariants are related to physical quantities.
Introduction
Point set topology is a disease from which the human race will soon recover.
—H. Poincaré (1908)
Poincaré conjecture was the first conjecture made on topology which asserts that a three-dimensional (3D) manifold is equivalent to a sphere in 3D subject to the fulfilment of a certain algebraic condition of the form f (x, y, z) = 0, where x, y and z are complex numbers. G. Perelman has (arguably) solved the conjecture in 2006 [4]. However, on practical aspects, just the reverse of what Poincaré had predicted happened. Topology and its relevance to condensed matter physics have emerged in a big way in recent times. The 2016 Nobel Prize awarded to D. J. Thouless, J. M. Kosterlitz, F. D. M. Haldane and C. L. Kane and E. Mele getting the Breakthrough Prize for contribution to fundamental physics in 2019 bear testimony to that.
Topology and geometry are related, but they have a profound difference. Geometry can differentiate between a square from a circle, or between a triangle and a rhombus; however, topology cannot distinguish between them. All it can say is that individually all these shapes are connected by continuous lines and hence are identical. However, topology indeed refers to the study of geometric shapes where the focus is on how properties of objects change under continuous deformation, such as stretching and bending; however, tearing or puncturing is not allowed. The objective is to determine whether such a continuous deformation can lead to a change from one geometric shape to another. The connection to a problem of deformation of geometrical shapes in condensed matter physics may be established if the Hamiltonian for a particular system can be continuously transformed via tuning of one (or more) of the parameter(s) that the Hamiltonian depends on. Should there be no change in the number of energy modes below the Fermi energy during the process of transformation, then the two systems (that is, before and after the transformation) belong to the same topology class. In the process, something remains invariant. If that something does not remain invariant, then there occurs a topological phase transition.