To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The development of active and low-cost transition metal oxide-based catalysts was vital for the catalytic oxidation of toluene. This study aimed to prepare Fe-Mn oxide catalysts by Mn-rich limonite, and investigate the catalytic activity and mechanism for toluene oxidation. The natural Mn-rich limonite was thermally activated at different temperatures and these thermally activated samples exhibited different oxidation activities. YL-300, obtained through thermal treatment at 300°C, exhibited excellent catalytic activity, showing 90% toluene conversion at 239°C (1000 ppm toluene) and remarkable catalytic stability even in the presence of water vapor (5 vol.%). The amount of oxygen vacancies in the catalyst was regulated by tuning the thermal treatment temperatures. Optimal thermal treatment facilitated the increase of oxygen vacancies and enhanced the oxygen mobility and redox capacity of YL-300, contributing to the complete oxidation of toluene to H2O and CO2. The oxidation of toluene was greatly influenced by the adsorbed oxygen species. This study demonstrates the potential of Mn-rich limonite as a promising catalyst for toluene oxidation, thereby promoting the utilization of natural mineral materials in the field of environmental pollution control.
In the UK, food banks and other forms of food aid have become a normalised support mechanism for those living at the sharp end of poverty. Drawing from accounts of those who have used, worked, and volunteered in two of England’s food banks during the Covid-19 pandemic, this article explores some of the key challenges that emerged for food aid during this unique period. In documenting these experiences, the paper concurs with previous work that has identified the expanding role of food banks in providing core welfare support, suggesting an increasingly extended welfare function of food aid. This has implications for understanding the effectiveness of welfare – and the appropriateness of our reliance on voluntary aid – in the post-pandemic period.
Validating the theoretical work on Rayleigh–Taylor instability (RTI) through experiments with an exceptionally clean and well-characterized initial condition has been a long-standing challenge. Experiments were conducted to study the three-dimensional RTI of an SF$_6$–air interface at moderate Atwood numbers. A novel soap film technique was developed to create a discontinuous gaseous interface with controllable initial conditions. Spectrum analysis revealed that the initial perturbation of the soap film interface is half the size of an entire single-mode perturbation. The correlation between the initial interface perturbation and Atwood numbers was determined. Due to the steep and highly curved feature of the initial soap film interface, the early-time evolution of RTI exhibits significant nonlinearity. In the quasi-steady regime, various potential flow models accurately predict the late-time bubble velocities by considering the channel width as the perturbation wavelength. Differently, the late-time spike velocities are described by these potential flow models using the wavelength of the entire single-mode perturbation. These findings indicate that the bubble evolution is influenced primarily by the spatial constraint imposed by walls, while the spike evolution is influenced mainly by the initial curvature of the spike tip. Consequently, a recent potential flow model was adopted to describe the time-varying amplitude growth induced by RTI. Furthermore, the self-similar growth factors for bubbles and spikes were determined from experiments and compared with existing studies, revealing that a large amplitude in the initial soap film interface promotes the spike development.
Special education enrollment increased in Flint following the 2014–2015 Flint Water Crisis, but lead exposure is not plausibly responsible. Labeling Flint children as lead poisoned and/or brain damaged may have contributed to rising special education needs (ie, nocebo effect). To better document this possibility, we surveyed schoolteachers and reviewed neuropsychological assessments of children for indications of negative labeling.
Methods
A survey of Flint and Detroit (control) public schoolteachers using a modified Illness Perception Questionnaire was conducted 5 years post-crisis. We also examined neuropsychological assessments from a recently settled class lawsuit.
Results
Relative to Detroit (n = 24), Flint teachers (n = 11) believed that a higher proportion of their students had harmful lead exposure (91.8% Flint vs 46% Detroit; P = 0.00034), were lead poisoned (51.3% vs 24.3%; P = 0.018), or brain damaged (28.8% vs 12.9%; P = 0.1), even though blood lead of Flint children was always less than half of that of Detroit children. Neuropsychological assessments diagnosed lead poisoning and/or brain damage from water lead exposure in all tested children (n = 8), even though none had evidence of elevated blood lead and a majority had prior learning disability diagnoses.
Conclusion
Teachers’ responses and neuropsychological assessments suggest Flint children were harmed by a nocebo effect.
Exposure to flood, one of the most widespread disasters caused by natural hazards, increases the risk of drowning. Driving through flooded waterways is a cause of death due to flood-related drowning, especially in flood-prone areas. This study aimed at identifying the risk factors for motor vehicle–related drowning in floods and its prevention strategies.
Methods
International and national databases (WOS, PubMed, Scopus, Google Scholar, Magiran, and SID) were searched in the time span from 2000 to 2022. The studies investigating the risk factors relevant to land motor vehicle–related drowning in floods and its prevention strategies were included and analyzed using thematic content analysis.
Results
In 14 eligible studies, risk factors for land motor vehicle–related drowning in floods were identified and categorized in 3 subthemes: driver (3 categories: socio-demographic characteristics, knowledge and attitude, and beliefs); technology (1 category: land motor vehicles); and environment (2 categories: physical and socio-economic environment). Physical and structural measures (1 category: road safety improvement) and nonstructural measures (4 categories: research and education and raising awareness, risk management, promoting social-cognitive beliefs, and reconstruction and improvement of legal infrastructure) were proposed as drowning prevention strategies.
Conclusions
The knowledge, attitude, and belief of the driver; the vehicle; and the environment were the most important risk factors of driving through flooded waterways. These factors should be considered when designing programs and physical and structural strategies for future interventions to curb this dangerous and potentially fatal driving behavior.
Lough Hyne (LH) Marine Nature Reserve in Ireland is a globally recognised biodiversity hotspot that hosts mesophotic-like communities in shallow water, however, major changes have occurred to most of the rocky cliff (>6 m) communities in one or more events between 2010 and 2015. To provide insights into these changes, we compared the sponge assemblage composition on the undersides of different sized, shallow (<1 m) subtidal boulders between 2000 and 2022 at two sites in LH. We also measured sponge species richness at seven sites in 2018. We found that unlike earlier reports from the deeper subtidal reef sponge assemblages, there was no evidence for changes in sponge assemblage composition on the undersides of boulders at either site. We also found high levels of sponge species richness at all seven sites sampled in 2018. We did find differences in sponge assemblages between sites and for different boulder sizes, which we propose is a result of site-specific environmental conditions and disturbance and size–area relationships. Since we found no changes in the shallow subtidal sponge assemblages between 2000 and 2022, our results support the hypothesis that changes to the deeper subtidal sponge assemblages at LH are driven by local processes associated with deeper water in LH, potentially related to the seasonal oxythermocline that forms within LH. Given the national and global importance of LH, understanding the drivers of change is critical to determine if management actions can prevent any future alterations to the LH sponge assemblages and support wider mesophotic community management.
Polycyclic aromatic hydrocarbons (PAHs) are major air pollutants that are ubiquitously produced by the combustion of organic materials, and it is extremely important to identify their pollution sources. In this study, molecular fingerprinting and compound class-specific radiocarbon dating (CCSRA) were performed on PAHs from canal sediments and air samples collected in Kolkata, India’s third largest city (population approximately 16 million), where PAHs pollution has been a serious problem. Average PAH (Σ12-parent PAHs) concentrations in air samples were 65.1 ng m–3 in summer and 70.9 ng m–3 in winter and in canal sediments were 32.7 µg g–1, which are classified as “very high-level” pollution. Molecular fingerprinting using methyl-PAH/PAH (MPAHs/PAHs) ratios and isomer pair ratios with molecular weights of 178, 202, 228, and 276 suggested that wood and coal combustion were the dominant sources of PAHs in the sediment, and that atmospheric PAHs were influenced by oil combustion in addition to them. The fraction of contemporary carbon (ƒC) of sedimentary PAHs (0.056–0.100), together with the extremely low MPAHs/PAHs ratio results, lead to the conclusion that the major source of the high concentration of PAHs in the canals is from coal combustion. On the other hand, the ƒC of atmospheric PAHs (0.272–0.369) was close to the share of biomass fuels in India’s domestic fuel consumption in 2011 (about 35%). Furthermore, the observed ƒC-discrepancy between atmospheric and sedimentary PAHs in the same urban environment was interpreted to give an insight into the loading pathway of PAHs to canal sediments in Kolkata.
We review criteria for comparing the efficiency of Markov chain Monte Carlo (MCMC) methods with respect to the asymptotic variance of estimates of expectations of functions of state, and show how such criteria can justify ways of combining improvements to MCMC methods. We say that a chain on a finite state space with transition matrix P efficiency-dominates one with transition matrix Q if for every function of state it has lower (or equal) asymptotic variance. We give elementary proofs of some previous results regarding efficiency dominance, leading to a self-contained demonstration that a reversible chain with transition matrix P efficiency-dominates a reversible chain with transition matrix Q if and only if none of the eigenvalues of $Q-P$ are negative. This allows us to conclude that modifying a reversible MCMC method to improve its efficiency will also improve the efficiency of a method that randomly chooses either this or some other reversible method, and to conclude that improving the efficiency of a reversible update for one component of state (as in Gibbs sampling) will improve the overall efficiency of a reversible method that combines this and other updates. It also explains how antithetic MCMC can be more efficient than independent and identically distributed sampling. We also establish conditions that can guarantee that a method is not efficiency-dominated by any other method.
El Sistema and Sistema-inspired programmes have become increasingly popular community music education and social welfare initiatives that aim to benefit socially and economically disadvantaged youth. The coronavirus disease 2019 (COVID-19) pandemic significantly disrupted many of these programmes. The purpose of this research was to investigate how eight Canadian El Sistema and Sistema-inspired programmes adapted to the COVID-19 pandemic. We interviewed eight teachers and eight administrators and found that their programming was impacted in relation to four themes: (a) an increased emphasis on social curricula, (b) pedagogical shifts, (c) inclusion of diverse musical voices and (d) adopting anti-racism perspectives. The COVID-19 pandemic response served as a significant catalyst for change for Canadian El Sistema and Sistema-inspired programmes, utilising the disruption to rethink and address participant needs.
Modons, or dipolar vortices, are common and long-lived features of the upper ocean, consisting of a pair of counter-rotating monopolar vortices moving through self-advection. Such structures remain stable over long times and may be important for fluid transport over large distances. Here, we present a semi-analytical method for finding fully nonlinear modon solutions in a multi-layer quasi-geostrophic model with arbitrarily many layers. Our approach is to reduce the problem to a multi-parameter linear eigenvalue problem which can be solved using numerical techniques from linear algebra. The method is shown to replicate previous results for one- and two-layer models and is applied to a three-layer model to find a solution describing a mid-depth propagating, topographic vortex.
Linear unsteady aerofoil theory, while successfully used for the prediction of unsteady aerofoil lift for many decades, has yet to be proven adequate for predicting the propulsive performance of oscillating aerofoils. In this paper we test the hypothesis that the central shortcoming of linear small-amplitude models, such as the Garrick function, is the failure to account for the flow acceleration caused by aerofoil thrust. A new analytical model is developed by coupling the Garrick function to a cycle-averaged actuator disc model, in a manner analogous to the blade-element momentum theory for wind turbines and propellers. This amounts to assuming the Garrick function to be locally valid and, in combination with a global control volume analysis, enables the prediction of flow acceleration at the aerofoil. The new model is demonstrated to substantially improve the agreement with large-eddy simulations of an aerofoil in combined heave and pitch motion.
This article explores the unmined textual history of one of Tibet's most influential historiographies, the Pillar Testament (bKa’-chems-ka-khol-ma), usually dated to the eleventh or the twelfth century. Drawing on previously known and unknown witnesses, the article compares a variety of narratives across most extant redactions. In doing so, it finds that the redaction chiefly consulted by scholars to date is an expanded and contaminated version that is notably later than previously assumed. Instead, another and heretofore largely neglected witness emerges as the most archaic extant redaction. The textual comparisons spotlight a wide range of alterations in the work's narratives and thus demonstrate how perceptions of early Tibetan historical episodes shifted over time. Such changes affected remembrance of Sino-Tibetan imperial relations, the origins of Buddhism and writing in Tibet and the genealogy of its emperors, among other things. The article concludes by critically discussing the witnesses’ dating and the hope we may place in the hunt for the work's illustrious but elusive original.
5wPatients with end stage kidney disease (ESKD) who receive in-center hemodialysis are disproportionately vulnerable to extreme weather events, including hurricanes and heat waves, that may disrupt access to healthcare providers, and life-sustaining treatments. This current era of climate-driven compounding disasters is progressively elevating the level of threat to the health and well-being of patients with ESKD. This analysis brings together multi-disciplinary expertise to explore the contours of this increasingly complex risk landscape. Despite the challenges, important advances have been made for safeguarding this medically high-risk patient population. Hemodialysis services providers have devised innovative systems for preparing their patients and sustaining, or rapidly reestablishing, hemodialysis services in the aftermath of a disaster, and maintaining open lines of communication with their caseloads of ESKD patients throughout all phases of the event. A description of lessons learned along the path towards improved patient support in disasters, is provided. The article concludes with a detailed case example, describing dialysis providers’ effective response throughout Hurricane Ian’s passage across the State of Florida in 2022. Based on lessons learned, this analysis outlines strategies for protecting patients with ESKD that may be adapted for future climate-potentiated disaster scenarios.
Most clay minerals are characterized by a platy morphology. By contrast, palygorskite has a fibrous morphology and is structurally distinct from the typical 1:1 and 2:1 layer structures. Diverse opinions exist on the origin of palygorskite in soils. Many authors suggest that palygorskite forms after smectite. Others favor its authigenesis during pedogenic processes or its inheritance from the parent material. This review provides a critical synthesis on the origin of palygorskite in the semi-arid-tropical (SAT) Vertisols and arid calcic soils of the Thar Desert of India. It also highlights the specific genetic pathway for the presence of palygorskite in the soils. The ubiquitous association of smectite with palygorskite is inadequate to explain the formation at the expense of smectite, because at pH 8.2 and above the smectite structure is subjected to dissolution to create soluble Si and Al, and the recrystallization of the soluble Si and Al to form palygorskite may not be possible in the Vertisols of the Indian SAT environment. Thus, mildly to moderate alkaline pedochemcial environments of the SAT Vertisols do not favor authigenic precipitation of the palygorskite in such soils. This review shows that the presence of palygorskite in the SAT Vertisols is due to its inheritance from the exhumed inter-trappean beds, infra-trappean beds, and bole beds. This view on the genesis of the palygorskite is also justified by its presence in weakly developed calcic soils of the Thar Desert as detrital flux from the adjoining marine sedimentary rocks.
Haplidus glabricollis Chemsak and Linsley, 1964 is synonymised with Limernaea ochracea (Fisher, 1927) (Coleoptera: Cerambycidae: Cerambycinae: Oemini). Adetus scissicauda (Bates, 1874) (Coleoptera: Cerambycidae: Lamiinae: Apomecynini) is reinstated, and Adetus alboapicalis Breuning, 1943 is proposed as a junior synonym. Adetus salvadorensis Franz, 1954 (Coleoptera: Cerambycidae: Laminae: Apomecynini) is redescribed and recorded from Oaxaca, Mexico. Plistonax antonkozlovi Santos-Silva et al., 2020 (Coleoptera: Cerambycidae: Lamiinae: Acanthoderini) and Hesychotypa danilevskyi Nearns and Nascimento, 2019 (Coleoptera: Cerambycidae: Lamiinae: Onciderini) are recorded for the first time for the province of Bocas del Toro, Panama. Dorcasta borealis Breuning, 1940 (Coleoptera: Cerambycidae: Lamiinae: Apomecynini) is newly recorded from Mexico (Yucatán). The type locality of Eupogonius longipilis Bates, 1880 (Coleoptera: Cerambycidae: Lamiinae: Desmiphorini) is corroborated and new state record from Chiapas, Mexico, is reported. Eupogonius vittipennis Bates, 1885 is recorded for Campeche, Mexico. Trichastylopsis skillmaninew species (Coleoptera: Cerambycidae: Laminae: Acanthocinini) is described from Jalisco and Michoacán, Mexico.