To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We provide new evidence about US monetary policy using a model that: (i) estimates time-varying monetary policy weights without relying on stylized theoretical assumptions; (ii) allows for endogenous breakdowns in the relationship between interest rates, inflation, and output; and (iii) generates a unique measure of monetary policy activism that accounts for economic instability. The joint incorporation of endogenous time-varying uncertainty about the monetary policy parameters and the stability of the relationship between interest rates, inflation, and output materially reduces the probability of determinate monetary policy. The average probability of determinacy over the period post-1982 to 1997 is below 60% (hence well below seminal estimates of determinacy probabilities that are close to unity). Post-1990, the average probability of determinacy is 75%, falling to approximately 60% when we allow for typical levels of trend inflation.
In an identified quality improvement effort, nurses were observed regarding their workflow while in contact precaution rooms. Multiple opportunities for hand hygiene were missed while nurses were in gloves, predominantly while moving between “dirty” and “clean” tasks. An education initiative afterward did not show improvement in hand hygiene rates.
Let $\alpha $ be a complex-valued $2$-cocycle of a finite group G with $\alpha $ chosen so that the $\alpha $-characters of G are class functions and analogues of the orthogonality relations for ordinary characters are valid. Then the real or rational elements of G that are also $\alpha $-regular are characterised by the values that the irreducible $\alpha $-characters of G take on those respective elements. These new results generalise two known facts concerning such elements and irreducible ordinary characters of $G;$ however, the initial choice of $\alpha $ from its cohomology class is not unique in general and it is shown the results can vary for a different choice.
The hydrodynamic influence of surface texture on static surfaces ranges from large drag penalties (roughness) to potential performance benefits (shark-like skin). Although it is of wide-ranging research interest, the impact of roughness on flapping systems has received limited attention. In this work, we explore the effect of roughness on the unsteady performance of a harmonically pitching foil through experiments using foils with different surface roughness, at a fixed Strouhal number and within the Reynolds number ($Re$) range of $17\,000\unicode{x2013}33\,000$. The foils’ surface roughness is altered by changing the distribution of spherical-cap-shaped elements over the propulsor area. We find that the addition of surface roughness does not improve the performance compared with a smooth surface over the $Re$ range considered. The analysis of the flow fields shows near-identical wakes regardless of the foil's surface roughness. The performance reduction mainly occurs due to an increase in profile drag. However, we find that the drag penalty due to roughness is reduced from $76\,\%$ for a static foil to $16\,\%$ for a flapping foil at the same mean angle of attack, with the strongest decrease measured at the highest $Re$. Our findings highlight that the effect of roughness on dynamic systems is very different than that on static systems; thereby, it cannot be estimated by only using information obtained from static cases. This also indicates that the performance of unsteady, flapping systems is more robust to the changes in surface roughness.
A set of complex numbers $S$ is called invariant if it is closed under addition and multiplication, namely, for any $x, y \in S$ we have $x+y \in S$ and $xy \in S$. For each $s \in {\mathbb {C}}$ the smallest invariant set ${\mathbb {N}}[s]$ containing $s$ consists of all possible sums $\sum _{i \in I} a_i s^i$, where $I$ runs over all finite nonempty subsets of the set of positive integers ${\mathbb {N}}$ and $a_i \in {\mathbb {N}}$ for each $i \in I$. In this paper, we prove that for $s \in {\mathbb {C}}$ the set ${\mathbb {N}}[s]$ is everywhere dense in ${\mathbb {C}}$ if and only if $s \notin {\mathbb {R}}$ and $s$ is not a quadratic algebraic integer. More precisely, we show that if $s \in {\mathbb {C}} \setminus {\mathbb {R}}$ is a transcendental number, then there is a positive integer $n$ such that the sumset ${\mathbb {N}} t^n+{\mathbb {N}} t^{2n} +{\mathbb {N}} t^{3n}$ is everywhere dense in ${\mathbb {C}}$ for either $t=s$ or $t=s+s^2$. Similarly, if $s \in {\mathbb {C}} \setminus {\mathbb {R}}$ is an algebraic number of degree $d \ne 2, 4$, then there are positive integers $n, m$ such that the sumset ${\mathbb {N}} t^n+{\mathbb {N}} t^{2n} +{\mathbb {N}} t^{3n}$ is everywhere dense in ${\mathbb {C}}$ for $t=ms+s^2$. For quadratic and some special quartic algebraic numbers $s$ it is shown that a similar sumset of three sets cannot be dense. In each of these two cases the density of ${\mathbb {N}}[s]$ in ${\mathbb {C}}$ is established by a different method: for those special quartic numbers, it is possible to take a sumset of four sets.
This paper outlines an experimental demonstration of an envelope tracking (ET) technique applied to a kilowatt-level single-ended solid-state power amplifier (SSPA), aimed at enhancing the charging efficiency of superconducting radio frequency (SRF) cavities by reducing reflection power while maintaining a high degree of efficiency. The technique is particularly designed for the pulsed operation of the European Spallation Source (ESS) at a nominal frequency of 352 MHz, with a 5% duty cycle and a pulse width of 3.5 ms. The study introduces an optimal charging scheme using a solid-state-based amplifier to maintain high efficiency, allowing for power ramp-up while minimizing reflections from SRF cavities and optimizing SSPA efficiency. A fast envelope tracking power supply (ETPS) system is implemented for the approximately 300 ms charging time required by the SRF cavities at ESS. The ETPS system, demonstrated on a single module as a proof-of-concept with scalability potential to a 400 kW power station, indicates an overall average efficiency of 70% and a 24% energy saving over traditional vacuum-tube based amplifiers. This demonstrates the ET technique’s effectiveness at the kilowatt level for efficient SRF cavity charging with reduced reflection, offering significant efficiency and energy savings.
Since 2008, we have observed a more prominent role of the state in economic life, with the widespread use of financial tools. Advancing discussions on the financialization of distributional politics, the expansion of financial statecraft as a result of fiscal conflicts, and the fragmentation of state power, this article explores how proliferating financial policies reconfigure the state and its relationship with the economy as well as its democratic foundations. I introduce the concept of financial security states to theorize reactions to mature financialization and its inherent instabilities, which provoke socially structured demands for public stabilization. Leveraging the tradition of fiscal sociology, I work out differences between taxation and welfare systems and those based on financial security. In particular, I show that financial security states exploit value uncertainties to postpone loss-reckoning, are carried by hybrid state-banking institutions, and leverage the states’ endogenous power within market-based finance. This article argues that the by-and-large regressive distributional outcomes and fiscal costs of financial policies remain opaque, due to strategic obfuscation, the failure of traditional modes of political mediation, and deficient budgeting procedures.
The numerical investigation focuses on the flow patterns around a rectangular cylinder with three aspect ratios ($L/D=5$, $10$, $15$) at a Reynolds number of $1000$. The study delves into the dynamics of vortices, their associated frequencies, the evolution of the boundary layer and the decay of the wake. Kelvin–Helmholtz (KH) vortices originate from the leading edge (LE) shear layer and transform into hairpin vortices. Specifically, at $L/D=5$, three KH vortices merge into a single LE vortex. However, at $L/D=10$ and $15$, two KH vortices combine to form a LE vortex, with the rapid formation of hairpin vortex packets. A fractional harmonic arises due to feedback from the split LE shear layer moving upstream, triggering interaction with the reverse flow. Trailing edge (TE) vortices shed, creating a Kármán-like street in the wake. The intensity of wake oscillation at $L/D=5$ surpasses that in the other two cases. Boundary layer transition occurs after the saturation of disturbance energy for $L/D=10$ and $15$, but not for $L/D=5$. The low-frequency disturbances are selected to generate streaks inside the boundary layer. The TE vortex shedding induces the formation of a favourable pressure gradient, accelerating the flow and fostering boundary layer relaminarization. The self-similarity of the velocity defect is observed in all three wakes, accompanied by the decay of disturbance energy. Importantly, the decrease in the shedding frequency of LE (TE) vortices significantly contributes to the overall decay of disturbance energy. This comprehensive exploration provides insights into complex flow phenomena and their underlying dynamics.
In early 2021, a Canadian investigation revealed the discovery of over a thousand grave sites of indigenous children on the grounds of Indian residential schools across Canada. These discoveries prompted US Secretary of the Interior Deb Haaland to announce a similar investigation into the ongoing legacy and intergenerational impact of federally sponsored Indian boarding schools in the United States. In addition to documenting the legacy of abuse, neglect and dominance of indigenous peoples, we believe that such reflection upon the impact of Indian boarding schools should also include the justifications that were used to promote the government policy of compelling indigenous children to leave family, tribe, customs and even language behind to be acculturated in remote boarding schools far from home or reservation. For while in hindsight these policies can be both deplored and regretted, they were not crafted in a philosophical vacuum. Specifically, it might come as a surprise to scholars today that Hegelian thought actually featured in the support and promotion of such policies. We propose to tell at least part of this story, by focusing on the leading American Hegelian of the time, William Torrey Harris, who—as director of the famed Concord School of Philosophy and also longtime US Commissioner of Education—was highly influential in both philosophical and educational circles. In that latter capacity, Harris penned a defence of the boarding school system, which drew upon broadly Hegelian ideas and language. So while we have elsewhere defended and lauded Harris and the St Louis Hegelians for their contributions to American philosophy and democratic educational thought, here is one respect in which this influence has not stood up well to the test of time.
The crystal structure of indacaterol hydrogen maleate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Indacaterol hydrogen maleate crystallizes in space group P-1 (#24) with a = 8.86616(9), b = 9.75866(21), c = 16.67848(36) Å, α = 102.6301(10), β = 94.1736(6), γ = 113.2644(2)°, V = 1273.095(7) Å3, and Z = 2 at 295 K. The crystal structure consists of layers of cations and anions parallel to the ab-plane. Traditional N–H⋯O and O–H⋯O hydrogen bonds link the cations and anions into chains along the a-axis. There is a strong intramolecular charge-assisted O–H⋯O hydrogen bond in the non-planar hydrogen maleate anion. There are also two C–H⋯O hydrogen bonds between the anion and cation. The cation makes a strong N–H⋯O hydrogen bond to the anion, but also acts as a hydrogen bond donor to an aromatic C in another cation. The amino group makes bifurcated N–H⋯O hydrogen bonds, one intramolecular and the other intermolecular. The hydroxyl group acts as a donor to another cation. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®).
Towards developing more effective interventions for fall-related injuries, this study analysed a novel database from six retirement home facilities over a 4-year period comprising 1,877 fallers and 12,445 falls. Falls were characterized based on location, activity, injury site, and type, and the database was stratified across four levels of care: Independent Living, Retirement Care, Assisted Care, and Memory care. Falls most occurred within the bedroom (62.8%), and during unknown (38.1%), walking (20.2%), and transfer tasks (14.6%). Approximately one in three (37%) of all falls resulted in an injury, most commonly involving the upper limb (31.8%), head (26.3%), and lower limb (22.2%), resulting in skin tears (35.3%), aches/pains (29.1%), or bruises (28.0%). While fall location, activity, and injury site were different across levels of care, injury type was not. The data from this study can assist in targeting fall-related injury prevention strategies across levels of care within retirement facilities.
How has water shaped the history of a region that is bordered by ocean, brimming with ephemeral rivers, and yet prone to drought? This article explores water histories in Southern Africa over the past two hundred years. Using oral traditions, epic poetry, archival sources, and secondary anthropological and archaeological literature, I examine how Africans and Europeans related to, claimed, and used different bodies of water. In the first section I discuss how water was central to isiNguni conceptions of social and political life. In the second section I discuss how European empires used water to enclose and dispossess African land and to build hydropolitical colonial orders over the nineteenth and twentieth centuries. I conclude by reflecting on afterlives of these water histories in the present.
In two-fluid simulations of gas–solid fluidised beds, the gaseous phase and the particulate phase are modelled as continuous media. The stress exerted by the particulate medium on the container walls should be modelled to predict accurately the bed dynamics. This paper addresses the modelling of sliding particle–wall contacts in two-fluid simulations, based on reference simulations coupling computational fluid dynamics with the discrete element method (CFD-DEM), in which the individual movement of the particles is tracked. The analysis of the CFD-DEM highlights the complex near-wall behaviour of the particles, which is not reproduced by two-fluid models. Nevertheless, the particle–wall shear stress can be expressed based on the total granular pressure within the first cell off the wall. The model is validated for the two-fluid simulation of a bubbling gas–solid fluidised bed of olefin particles in the dense-fluidisation regime.
Carlsen [‘$\ast $-isomorphism of Leavitt path algebras over $\Bbb Z$’, Adv. Math.324 (2018), 326–335] showed that any $\ast $-homomorphism between Leavitt path algebras over $\mathbb Z$ is automatically diagonal preserving and hence induces an isomorphism of boundary path groupoids. His result works over conjugation-closed subrings of $\mathbb C$ enjoying certain properties. In this paper, we characterise the rings considered by Carlsen as precisely those rings for which every $\ast $-homomorphism of algebras of Hausdorff ample groupoids is automatically diagonal preserving. Moreover, the more general groupoid result has a simpler proof.
We present the results from a series of experiments investigating the dynamics of gravity currents which form when a dense saline or particle-laden plume issuing from a moving source interacts with a horizontal surface. We define the dimensionless parameter $P$ as the ratio of the source speed, $u_a$, to the buoyancy speed, $(B_0/z_0)^{1/3}$, where $B_0$ and $z_0$ are the source buoyancy flux and height above the horizontal surface, respectively. Using our experimental data, we determine that the limiting case in which $P=P_c$ the gravity current only spreads downstream of the initial impact point occurs when $P_c=0.83\pm 0.02$. For $P< P_c$, from our experiments we observe that the plume forms a gravity current that spreads out in all directions from the point of impact and the propagation of the gravity current is analogous to a classical constant-flux gravity current. For $P>P_c$, we observe that the descending plume is bent over and develops a pair of counter-rotating line vortices along the axis of the plume. The ensuing gravity current spreads out downstream of the source, normal to the motion of the source. Analogous processes occur with particle-laden plumes, but there is a second dimensionless parameter $S$, the ratio of the particle fall speed, $v_s$, to the vertical speed of a plume in a crossflow, $(B_0/u_a z_0)^{1/2}$. For $S\ll 1$, particles remain well mixed in the plume and a particle-driven gravity current develops. For $S\gg 1$, particles separate from the plume prior to impacting the boundary which leads to a fall deposit and no gravity current. We discuss these results in the context of deep-sea mining.
on three important function spaces (i.e., derivative Hardy spaces, weighted Dirichlet spaces, and Bloch type spaces), which is a continuation of the previous works of Mirotin et al. Here, $\mu $ is a positive Radon measure, K is a $\mu $-measurable function on the open unit disk $\mathbb {D}$, and $\sigma _w(z)$ is the classical Möbius transform of $\mathbb {D}$.
This paper examines how unionization affects economic growth through its impact on industry concentration in a two-country model of international trade and endogenous productivity growth. Knowledge spillovers link firm-level productivity in innovation with geographic patterns of industry ensuring a faster rate of output growth when industry is relatively concentrated in the country with the greater labor supply. We show that stronger bargaining power in the relatively large country increases the rate of output growth when labor unions are employment-oriented but decreases the rate of growth when unions are wage-oriented. We then calibrate the model using labor market data for the United Kingdom and France and study the effects of union bargaining power on industry location patterns, output growth, and national welfare.
Although federal judges are the ultimate arbiters of insider trading enforcement, the role of their political ideology in insider trading is unclear. Using the partisanship of judges’ nominating presidents to measure judge ideology, we first document that liberal judges are associated with heavier penalties in insider trading lawsuits than conservative judges. Next, we find that firms located in circuits with more liberal judges have fewer opportunistic insider sales. Cross-sectional analyses show that this deterrent effect is stronger when managers face a higher risk of insider trading lawsuits. Finally, we find that the Securities and Exchange Commission considers judges’ ideology when selecting litigation forums.