To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
De-tert-butylation of 2-tert-butylphenol was carried out over thermally-treated and acid-treated Jordanian bentonite clay samples. This reaction was found to follow first-order kinetics for all clay samples with different pretreatment procedures. The apparent rate constant, k, was also determined, and found to depend on the pretreatment. Thermal pretreatment at temperatures up to 250°C has an enhancing effect on surface acid sites. The total surface acidity (Ho <4.8) and the concentration of strong acid sites peaked at 250°C. Also, as a result, the maximum catalyst activity was obtained with samples treated at this temperature. Acid pretreatment with 0.10 M HCl, 1.0 M H2SO4 or 1.0 M H3PO4, followed by thermal treatment at 250°C produced the best enhancement effect on the surface acidity and catalytic activity.
Clay minerals are common constituents of the Miocene Surma Group reservoir rocks in the Sylhet Trough, Bengal Basin, and may exert significant controls on reservoir quality. The relationship between diagenetic clay minerals and reservoir quality in the petroliferous Sylhet Trough is poorly understood, however. The current study was aimed at the origin and diagenetic pattern of clay minerals in interbedded sandstones and shales using thin-section petrography, scanning electron microscopy (SEM), and X-ray diffraction (XRD), and understanding their diagenetic effects on reservoir quality. The results showed that the clay mineral cements in sandstones comprise mainly chlorite, illite/illite-smectite, and minor smectite and kaolinite. In the early diagenetic stage, clay rims and growth of vermiform kaolinite occur and partly occlude the pore throats. Deep burial effects include pore-filling, pore-lining, and grain-coating authigenic clays (mainly chlorite and illite). Diagenetic clay minerals and mechanical clay infiltration showed a systematic distribution in sandstones lying in the vicinity of sequence and parasequence boundaries. In a lowstand systems tract (LST), clay minerals within the sandstones commonly include mechanically infiltrated smectitic clays that eventually evolved to grain-coating chlorite and/or illite during the meso-diagenesis stage. The presence of clays/clay minerals has no significant impact upon reservoir quality of sandstones. The Surma Group shales are enriched in illite with significant proportions of chlorite and kaolinite and are likely to be mainly detrital, with diagenetic changes of smectite to illite.
Clayey soils are essential materials used to reduce hydraulic conductivity and pollutant migration, common at sites of waste disposal. This study investigates the possible use of a Tunisian soil as a lining material for disposal sites for acidic-fluoride wastes. A permeability test on a waste-solution sample (pH = 2.7) obtained from a disposal site in southern Tunisia was conducted over a period of about 2 years. The test results show that the permeability decreased with time until stabilized at 8.33 × 10−11 m/s. After the permeability test, the samples retrieved from the permeameter show a degradation state which varied with the thickness of the specimen. These samples can be classified into three zones (Z1: unaffected, Z2: moderately affected; and Z3: extensively affected). Physicochemical characterization of the three samples (Z1, Z2, and Z3), and of the original argillaceous soil, was by X-ray diffraction, Fourier transform infrared spectroscopy, differential thermal and thermal gravimetric analysis, 29Si and 27Al nuclear magnetic resonance, and N2-adsorption techniques. The original sample consists essentially of palygorskite, kaolinite, and quartz. Sample Z3 underwent complete dissolution of kaolinite which supports the precipitation of fluoroaluminate and the appearance of an X-ray amorphous silica phase. In samples Z1 and Z2, the soil adsorbs fluoride at a rate of ∼68.5 mg/g and is highly resistant to acidic attack.
The paper develops a methodology to enable microscopic models of transportation systems to be accessible for a statistical study of traffic accidents. Our approach is intended to permit an understanding not only of historical losses but also of incidents that may occur in altered, potential future systems. Through such a counterfactual analysis, it is possible, from an insurance, but also from an engineering perspective, to assess the impact of changes in the design of vehicles and transport systems in terms of their impact on road safety and functionality.
Structurally, we characterize the total loss distribution approximatively as a mean-variance mixture. This also yields valuation procedures that can be used instead of Monte Carlo simulation. Specifically, we construct an implementation based on the open-source traffic simulator SUMO and illustrate the potential of the approach in counterfactual case studies.
Talc deposits, located mainly in three areas of north-central Turkey, are present in the ophiolitic series of the Cretaceous and in siliciclastic rocks of the Paleocene. Talc deposits related to ophiolites are between tectonite and cumulate occurring as beds and/or lenses and 0.1–3 cm thick fracture fillings within a 5 m brecciated zone with a vein-type bedding. Sedimentary-hosted talc beds and semi-rounded to angular talc grains (0.1–2 cm) range in thickness from 0.1 to 30 cm within marls and conglomerates. Talc veins form lenses (a few meters long) and spheroidal and/or ellipsoidal nodules (1–10 cm). Calcite, dolomite, serpentine and/or mixed-layered illite-smectite (I-S) minerals are encountered in the talc samples. Serpentine with positive U and Hf anomalies, and talc with positive Nb and Zr anomalies, and negative Ta and Ce anomalies are typically depleted in P and Ti, based on chondrite-normalized trace element patterns. The light rare earth element content of sedimentary-hosted talc with a negative Gd anomaly is richer than those of ultramafic-hosted talc with a negative anomaly for Eu as well as serpentine. Significantly, talc with a uniquely sedimentary origin tends to be the principal source of Nb, Hf, Zr, La, Ce, Pr and Nd with respect to serpentine. δ18O and δD values for talc range from +13.8 to +17.5‰ and −60 to −36‰, and those of serpentine are +9.4 and −88‰, indicating supergene conditions for sedimentary-hosted talc and hypogene for ultramafic-hosted talc. When compared with seawater, δ18O data indicate temperatures of 68°C and 80–98°C for the sedimentary- and ultramafic-hosted talc formations, respectively, and 100°C for serpentine, suggesting that talcification and serpentinization of ultramafic rocks both occurred at nearly the same time with various stages. All data show that the talc occurrences are divided into two types based on their mode of formation. The first corresponds to a serpentinization stage within the ophiolites. The others are the neoformation products of sedimentary deposition, diagenetic and post-diagenetic processes, respectively. Sedimentary-hosted talc also seems to have inherited trace element and isotopic compositions from the parent ultramafic rocks.
Because long-term leachate migration through a hydraulic barrier is inevitable, compacted clay and cementitious liners are commonly used as ‘active-passive’ liners to attenuate percolated leachate. The scarcity of suitable clay and because of the CO2 emitted during the production of Portland cement as well as drying shrinkage, flow rate due to consolidation, limited attenuation capacity, and chemical instability may mean that these are not the best choices of materials to use for this purpose. An environmentally friendly method to improve the properties of local clay and provision for a long-term physical and chemical containment are essential. Geopolymers can be environmentally friendly substitutes for Portland cement to improve soil properties, not just because of the reduced carbon dioxide emission, but also because of its superior physical and chemical properties, as well as significant early strength, reduced shrinkage, freeze-thaw resistance, long-term durability, and attenuation capacity. According to previous studies, class-F fly ash-based geopolymers activated with NaOH exhibit superior attenuation capacity and long-term durability. The presence of silica, alumina, and iron oxides and the lack of calcium oxide play pivotal roles in the acceptable attenuation capacity and chemical stability of class-F fly ash. Accordingly, a clay-fly ash geopolymer may also work as a sustainable liner with appropriate physical and chemical performance. Clay can also participate in the geopolymerization process as an alumino-silicate precursor. All components of clay-fly ash geopolymers possess acceptable adsorption capacity. The type and percentage of the constituent raw materials control the attenuation capacity and physical properties of final products, however. The porosity and conductivity of typical geopolymers are related to the activator type and concentration, water content, and curing condition. Furthermore, the properties of liner materials can be adjusted with respect to the target contaminants. The present study aimed to present a comprehensive review of the relevant studies to highlight the properties required.
Different changes in the structural and thermal properties of various types of talc have been reported in the literature which have made comparison of analytical results difficult. The objective of the present study was to obtain some fundamental insights into the effects of the thermal behavior of talc and to carry out kinetic analyses of the decomposition of talc under high temperature. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetry-differential scanning calorimetry (TG-DSC) were used to study the thermal decomposition mechanism. The Coats-Redfern decomposition model was used to determine the decomposition mechanism of talc samples. The results showed that the decomposition of talc commenced at ~800°C, peaking at ~895°C, with the formation of enstatite and amorphous silica. An isothermal treatment at 1000°C caused the complete dehydroxylation of talc. The XRD and FTIR results indicated that the enstatite and amorphous silica phases were transformed into clinoenstatite and paracrystalline opal phases, respectively, after the decomposition stage at 1200°C. Good linearity in the Coats-Redfern model was observed from room temperature to 1300°C and the activation energy was calculated to be 69 kcal/mol.
The substitution in layered double hydroxide-like phases (LDH) of composition was studied by X-ray diffraction and X-ray absorption spectroscopy. It was found that the lamellar character is maintained over the entire range of the substitution. The local order for the composition {Co2Al} is typical of brucite-like sheets, whereas segregation into small domains may explain the results obtained when the percentage of Cu atoms is increased. The {Cu2Al} end-member material presents a local order around the Cu atoms closely related to the botallackite structure as present in basic layered Cu salts, with the presence of two distinct Cu-Cu distances.
Recent discoveries of oil in deeply buried paleoregolith profiles on the Utsira High, Norwegian North Sea, was the first time basement rocks had been demonstrated to be petroleum reservoirs on the Norwegian continental shelf. The present study aimed to establish the processes responsible for the primary weathering sequence, distinguish them from other phases of alteration, and create a model for the development of reservoir properties in crystalline basement rocks.
Hand-specimen and laboratory tests revealed a link between reservoir properties in weathered granitic rocks and alteration facies. Samples were obtained from two distinct paleoregolith profiles on the Utsira High. The core samples were studied in detail by optical microscopy, X-ray powder diffraction, scanning electron microscopy, and X-ray fluorescence. In the altered coherent rock facies, porosity and permeability were mainly created by joints and fractures prior to subaerial exposure. In the altered compact rock and altered incoherent rock facies, the development of reservoir properties was increasingly affected by physicochemical interactions between the rock and percolating fluids during subaerial exposure and early diagenesis. In well 16/3-4, the altered coherent rock facies contained R0 illite-smectite (I-S), well ordered kaolinite, and a mixture of fine-grained mica and illite, produced in semi-open and closed microsystems. In the altered compact rock and altered incoherent rock facies, disordered kaolinite became more abundant at the expense of R0 I-S, well ordered kaolinite, plagioclase, and biotite, suggesting alteration in semi-open microsystems. The collapse of the rock structure and clogging of mesofractures by clays contributed to reduced permeability in the clay-rich upper part of the altered incoherent rock. In contrast, well 16/1-15 represented a more deeply truncated weathering profile compared to 16/3-4, characterized by open and interconnected mesofractures and moderate formation of clay. R0 I-S was present and kaolinite was rare throughout the profile, suggesting stagnant conditions. During burial, a porosity-reducing serpentine-chlorite Ib β = 90° polytype formed in the overlying sandstone and the regolith. Application of these results should improve the success of exploration and production efforts related to hydrocarbon reservoirs in the altered crystalline basement.
The selectivities of clay minerals for larger organic cations over smaller ones have been attributed to favorable clay-organic interactions in clay interlayers and to hydrophobic effects resulting from (partial) dehydration of organic cations in the clay interlayers, but the magnitudes of these energy components have not been estimated. The objective of this study was to differentiate and quantify the contributions of clay-phase and aqueous-phase energy changes to the overall thermodynamics of cation exchange, and thereby to determine which forces control the general selectivity of smectites for organic cations. We compiled literature measurements and estimates for the free energies of overall cation exchange reactions and also for the free energies of organic cation hydration. Our study suggests that organic cation-exchange thermodynamics can be broken into three classes: (1) For two organic cations with identical head-groups, the difference in their cation exchange selectivities is driven almost quantitatively by the difference in their free energies of hydration. Here, the mechanism for organic cation selectivity is almost pure hydrophobic expulsion of the larger cation from water. The clay interlayer simply behaves like a subaqueous phase into which the least hydrophilic organic cations partition and the essentials of such cation exchange selectivity can be explained without any favorable clay-organic interactions. (2) For two organic cations with rather different head-groups, the difference in their cation exchange selectivities is just a small percentage of the difference in their free energies of hydration. This indicates that the clay phase interacts much more strongly with the cation having the smaller head-group, as might be expected on the basis of simple electrostatics. Here, the clay has an intrinsic strong preference for the cation with smaller head-group yet ‘selects’ for the cation with larger head-group because the aqueous-phase preference for the cation with smaller head-group is even stronger than the clay preference. (3) When the clay is already substantially loaded with organic cations, then van der Waals forces apparently can play a significant role in determining organic cation exchange selectivity differences.
Although low density polyethylene (LDPE) has long been widely used in packaging applications, some limitations in its use still exist and are due to its relatively poor gas barrier properties and low mechanical strength which can restrict its extensive use for more advanced applications, such as electronic and pharmaceutical packaging. The purpose of this study was to investigate the possibility of using montmorillonite (MMT) nanoclay as a means to enhance the thermal, mechanical, and barrier properties of LDPE prepared via melt extrusion. The level of exfoliated dispersion of the MMT nanoclay in the prepared LDPE-MMT composite was confirmed using transmission electron microscopy (TEM). The relationship between the resulting morphology and the thermal, mechanical, and barrier properties as a function of the MMT content was evaluated. The results showed that incorporating >3 wt.% of MMT nanoclay produced significant changes in the morphology of the LDPE-MMT nanoclay composite in that the segregated matrix adopted an oriented arrangement of exfoliated clay platelets. Thermogravimetric analysis (TGA) showed that the thermal stability of LDPE improved significantly as a result of MMT nanoclay incorporation. Furthermore, differential scanning calorimetry (DSC) analysis indicated that increasing clay content above 3 wt.% effectively reduces the crystallinity of LDPE-MMT composites through the suppression effect. The tensile strength of LDPE increased gradually with an increased content of MMT nanoclay and the maximum value of 16.89 N/mm2 was obtained at 10 wt.% MMT content. This value represents a 40.87% increase relative to the tensile strength of the pristine LDPE. Barrier properties of LDPE and LDPE-MMT nanoclay composites were assessed by examining the permeability with respect to oxygen and water vapor. As the content of MMT nanoclay was increased to 10 wt.%, the permeability of the nanocomposite films to oxygen and water vapor notably decreased to 42.8% and 26.2%, respectively.
Anisotropy in clay-rich sedimentary rocks is receiving increasing attention. Seismic anisotropy is essential in the prospecting for petroleum deposits. Anisotropy of diffusion has become relevant for environmental contaminants, including nuclear waste. In both cases, the orientation of component minerals is a critical ingredient and, largely because of small grain size and poor crystallinity, the orientation distribution of clay minerals has been difficult to quantify. A method is demonstrated that relies on hard synchrotron X-rays to obtain diffraction images of shales and applies the crystallographic Rietveld method to deconvolute the images and extract quantitative information about phase fractions and preferred orientation that can then be used to model macroscopic physical properties. The method is applied to shales from European studies which investigate the suitability of shales as potential nuclear waste repositories (Meuse/Haute-Marne Underground Research Laboratory near Bure, France, and Benken borehole and Mont Terri Rock Laboratory, Switzerland). A Callovo-Oxfordian shale from Meuse/Haute-Marne shows a relatively weak alignment of clay minerals and a random distribution for calcite. Opalinus shales from Benken and Mont Terri show strong alignment of illite-smectite, kaolinite, chlorite, and calcite. This intrinsic contribution to anisotropy is consistent with macroscopic physical properties where anisotropy is caused both by the orientation distribution of crystallites and high-aspect-ratio pores. Polycrystal elastic properties are obtained by averaging single crystal properties over the orientation distribution and polyphase properties by averaging over all phases. From elastic properties we obtain anisotropies for p waves ranging from 7 to 22%.
Lithiophorite is a naturally occurring phyllomanganate which has been identified in soils and ores. Studies on a synthetic version have shed light on the conditions required for the formation of lithiophorite. In this study, we successfully prepared lithiophorite under highly alkaline conditions. In addition, we found that Li+, Al3+ and hydrothermal treatment are all necessary for the formation of lithiophorite. Lithiophorite, birnessite and Li-intercalated gibbsite were examined by infrared (IR) spectroscopy. The Mn oxide sheets of lithiophorite and birnessite were found to have quite similar structural environments. On the other hand, the LiAl2(OH)6 sheets are affected more markedly by the Mn oxide sheets. After intercalation, the symmetry of the six interlayer OH groups of LiAl2(OH)6 is reduced and they are divided into two groups occupying different sites, corresponding to the IR absorption bands at 3480 and 3312 cm−1, respectively.
Organic ligands, such as EDTA, accelerate the dissolution of silicate and oxide minerals. In natural systems, oxyanions can compete with organic ligands for mineral surface sites thereby affecting ligand-promoted dissolution rates, either enhancing or inhibiting dissolution, depending upon pH. The influence of selenite, molybdate and phosphate on the EDTA-promoted dissolution of goethite has been examined and a mechanism proposed for the observed differences in dissolution rates over a pH range of 4–8. We propose that the surface complex formed by EDTA is the controlling factor for the observed dissolution rate, with mononuclear complexes accelerating dissolution compared to bi- or multinuclear complexes. Dissolution results from our experiments suggest that EDTA forms multinuclear complexes at pH values ⩾6 and mononuclear complexes at pH values <6. Dissolution results show that when the oxyanion and the EDTA are present in the system at concentrations nearly equalling the surface sites available for adsorption, the oxyanion reduces the adsorption of EDTA and inhibits dissolution. However, if the oxyanion is present at lower concentrations at pH values ⩾6, EDTA is adsorbed but the number of carboxylic groups that can bind to the surface is reduced causing the formation of mononuclear complexes. This shift to a weaker surface complex enhances the EDTA-promoted dissolution of goethite in the presence of the oxyanions compared to EDTA-promoted dissolution in their absence.
Layer charge is an important property of 2:1 phyllosilicates originating from isomorphic substitutions in the structure, from vacancies in the octahedral sheet and from unsatisfied bonds at the edges of the crystals. It is of particular interest in the case of smectites because it affects important properties of this mineral. Several methods have been proposed for determining the layer charge of smectites, namely the structural formula method (SFM), the alkylammonium method (AAM), the NH4-method, the K-saturation method, and the O-D method. Most of these methods have been used extensively in the past and they all have advantages and shortcomings. The SFM and the AAM are based on different principles and are considered as primary methods. They have been used for a long time but they are time consuming and they provide contrasting layer charge values, with the AAM yielding consistently lower layer charge values than the SFM, especially for low-charge smectites. The remaining methods have been developed more recently and have been calibrated over their primary counterparts. They are applied easily and are capable of producing a large amount of data within a short time. In this sense they can be used both for geological interpretations and for assessment of bentonite deposits at an industrial scale.
The Markovian model of mixed-layering that has been used until now for the modeling of X-ray diffraction (XRD) patterns of 2:1 phyllosilicates describes the mixed-layer crystals as stacks of ‘layer units’ (LUs) that associate a 2:1 layer with an interlayer content. This model is not consistent when it is applied to a mixed-layer mineral (MLM) involving electrically charged layers, i.e. most of the mixed-layer phyllosilicates with 2:1 layers. Two consistent models can be proposed for these MLMs, which, instead of LUs, stack ‘interlayer units’ (IUs), composed of an interlayer content sandwiched between two half-layers. The IU-NPL model (interlayer units, non-polar layers) imposes non-polarity on the 2:1 layers resulting from the stack of these IUs, which implies restrictions on the succession of the IUs. In the other consistent model, the IU-PL one (interlayer units, polar layers), these restrictions are not imposed. These two models reproduce the Non-Polar 2:1 Layer Model and the Polar 2:1 Layer Model described by Altaner and Ylagan for illite-smectite mixed layering, and the second model corresponds to the stacks of O0.5 T I′ T O0.5 units described by Olives et al.
The present work points out the similarities and discrepancies of the calculated XRD patterns by using computer programs designed for the three models of mixed-layering (LU, IU-NPL and IU-PL) and for two-and three-component MLMs. Illustrations are provided for some I-S and I-S-V MLMs.
The IU-PL model leads to XRD patterns similar to those of the LU model. It is in agreement with lattice-energy calculations, expandability measurement, HRTEM imaging and NMR spectroscopy.
High-resolution transmission electron microscopy (HRTEM) images of two dioctahedral micas, celadonite and cis-vacant (cv) illite, were examined in detail to understand the effects of electron radiation on their structures during image acquisition. Celadonite, a dioctahedral mica with Fe and Mg as major octahedral cations, originally has a trans-vacant (tv) octahedral sheet but the contrast in the highresolution transmission electron microscopy (HRTEM) images indicates a different cation distribution in the sheet. Furthermore, the β angle for the 1M polytype derived from the HRTEM images is ~98.5º, which is considerably smaller than that (~100.5º) reported for celadonite. In previous works, cation migration from the tv to cv-like configurations and a decrease in the β angle after dehydroxylation of celadonite/ glauconite by heating were reported. The same phenomenon, dehydroxylation and subsequent cation migration, probably occurs by electron radiation in TEM. However, the new cation-distribution models derived from HRTEM images along the [100] and [110] directions are not in agreement. On the other hand, the contrast in a number of HRTEM images from an illite specimen in which cv-illite is dominant is the same as that for the tv-dioctahedral layer. This result is also interpreted as cation migration accompanied by dehydroxylation in TEM, as reported in heated cv-illite. The increased β angle (~102.5º) from that in the natural state (101.5º) estimated from the HRTEM images also supports this interpretation. This phenomenon is a large obstacle to the investigation of phyllosilicates containing Al-rich cv and Mg,Fe-rich tv 2:1 layers, using HRTEM.