To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This article examines Sanctus melodies from the tenth and eleventh centuries with special attention to the division of the first verbal phrase. The melodies with circulation in all regions of the Roman rite fall into two groups, an earlier one with ternary division and a later one with binary division. This picture is further enriched by the analysis of melodies connected in some way with these widespread melodies, by the simple melodies of the Sundays and weekdays and by an overview over northern French melodies of the eleventh and twelfth centuries.
This introduction to the Journal of the Gilded Age and Progressive Era’s special issue, “New Approaches to Music and Sound,” provides a historical sketch of American music and the American soundscape at the turn of the twentieth century. It also offers a discussion of relevant historiography, taking stock of recent work in sound studies and its influence on research on music and sound of the period. Finally, it introduces the four research articles featured in this special issue and marks their contributions to our understandings of listening practices, normative understandings of audition and speech, and the sonic dimensions of politics and capitalism, race and national identity, imaginings of the past and visions for the future in the late nineteenth and early twentieth centuries.
An E-band Cassegrain switched beam high-gain antenna concept for 5G backhauling systems is proposed in this article. The antenna requirements target the compensation of small misalignments (within ±1 degrees in both azimuth and elevation planes) in E-band backhauling links due to adverse weather conditions or thermal deformations. The intended antenna is able to realize beam-switching operations by using a feed-array architecture based on a 7 × 7 array of cavity-backed magnetoelectric (ME) dipoles, where every element is capable of providing a steering of ±0.33 degrees in both the elevation and the azimuth planes. The ME dipole illuminators combined with a Cassegrain reflector provide a gain of 52 dBi within the whole scanning range. Besides, they can be easily integrable with the front-end modules, thus being an easily implementable and low-cost alternative to other more complex solutions based on horns or lens antennas.
Pressure-gradient-driven flows through sinusoidal channels have been studied. The analysis was carried out up to the formation of secondary nonlinear states and spanned a range of low and moderate Reynolds numbers. Direct numerical simulations were used to identify and determine the properties of steady as well as non-stationary, two-dimensional (2-D) and three-dimensional secondary flows. Our results indicate the existence of several distinct solution types. Two-dimensional, stationary flows with periodicity determined by the corrugation represent the first type. The second type is associated with the appearance of 2-D oscillatory flows arising from the onset of unstable travelling waves. Such oscillatory solutions are generally out of phase with the wall corrugation but could be in phase in special cases determined by the ratio of the critical disturbance wavelength and the channel corrugation wavelength. Consequently, several distinct types of time-dependent solutions are possible. The third type of solution results from the centrifugal effect caused by wall curvature and leads to three-dimensionalization of the flow through the onset of stationary streamwise vortices. Finally, various states resulting from the interaction of different solution types are possible. We examine those states and present a bifurcation diagram illustrating the formation of some of them. The results presented in this paper might help with the development of small-scale flow measurement and detection devices operating at low and moderate Reynolds numbers, as well as in the use of wall topographies for the intensification of mixing in flows with moderate, subturbulent Reynolds numbers.
We study the application of Taylor's frozen hypothesis to the pressure fluctuations in turbulent channels by means of spatio-temporal data from direct numerical simulations with large computational domains up to the friction Reynolds number $R{e_\tau } = 2000$. The applicability of the hypothesis is quantitatively verified by comparing the wavenumber and Taylor (frequency) premultiplied spectra of the pressure fluctuations at each distance y from the wall. Using the local mean velocity $U(y)$ for the hypothesis leads to a large difference between both spectra with a value of $O(50\,{\%})$ for its maximum from the wall to $y/h \approx 0.2$, where h is the channel half-depth. Alternatively, the convection velocity of the pressure fluctuations ${C_p}(y)$, originally defined by Del Álamo & Jiménez (J. Fluid Mech., vol. 640, 2009, pp. 5–26) as a function of y, is investigated and adopted for the hypothesis. It is nearly equal to $U(y)$ from ${y^ + } = 20$ to the channel centre, where ${y^ + } = y{u_\tau }/\nu $, in which ${u_\tau }$ and $\nu $ represent the friction velocity and kinematic viscosity, respectively. For ${y^ + } \le 20$, ${C_p}(y)$ is almost constant with a value of around $12{u_\tau }$. Applying ${C_p}(y)$ for the hypothesis decreases the difference between both spectra down to a value of $O(10\,{\%})$ for its maximum from the wall to $y/h \approx 0.2$. Finally, the difference between the pressure wavenumber and frequency premultiplied spectra near the wall is reduced further via applying a wavenumber-dependent convection velocity. This wavenumber-dependent convection velocity is the linear combination of the convection velocities of the turbulent structures associated with the pressure field weighted by their relative contributions to the pressure variance.
It is a characteristic of platform capitalism that struggles to re-embed digital platform work within institutionalised forms of employment have been set in motion by new labour actors (i.e. self-organised, grassroots unions). Contrary to the view that these new actors signify the decades-long decline of traditional unions, evidence increasingly highlights their continued relevance to the labour–capital relations of platform capitalism. We argue that dynamic interactions between ‘old’ and ‘new’ labour actors in platform capitalism are influenced by national union traditions that emerge more vividly when struggles to re-embed labour relations require the transition to more institutionalised forms of labour resistance. We develop this argument based on a longitudinal qualitative study of labour struggles in the food delivery sector in the city of Bologna, Italy. We pay particular attention to the dynamics of intra-labour actor relations that have unfolded in the sector across different temporally based events of contention in the city. As we illustrate, synergies between the two were prompted by the self-organised workers’ need to rely on partners with an ‘official’ status when re-embedding procedures required; yet, collaboration was also favoured by what we describe as a ‘posture of respect’ developed by the traditional union vis-à-vis the self-organised informal union, particularly with regard to their quest for autonomy from traditional union structures. We interpret this approach of the established labour actor in line with its traditional orientation as ‘class’ actor, whose actions look beyond the membership so as to expand solidarity to all workers, including in new productive (platform) sectors.
A newly developed compact AMS, LEA (Low Energy Accelerator), is tested and compared with a state-of-the-art AMS system MICADAS (Mini Carbon Dating System), which has a precision performance of better than 1‰ for modern 14C. The main difference between these two systems is the acceleration voltage, which has been reduced from 200 kV with the MICADAS system to 50 kV with the LEA system. In order to execute the final performance tests, exactly same samples (2 sets consisting of 7 standards, 4 blanks, 26 wood samples) are measured on both systems successively. The results show that the LEA system is fully operational, and the performance is entirely comparable with that of the MICADAS system.
This paper embeds the early political economy of Friedrich August von Hayek in the intellectual milieu of German ordoliberalism. The urgency during the 1930s and 1940s to stabilize the disintegrating societal orders is identified as a crucial driver behind the parallelisms between Hayek and the ordoliberals. Their shared theoretical position is that in such moments, liberty can thrive sustainably only after a framework of general and stable rules has been established. Hayek’s proximity to ordoliberalism was most explicitly discernible in The Road to Serfdom and at the founding meeting of the Mont Pèlerin Society in 1947, culminating in the shared politico-economic vision of the competitive order. The contextual nature of Hayek’s ordoliberalism surfaced in the years after The Constitution of Liberty when his focus shifted, along with the postwar intellectual and institutional stabilization of the West: from how stable orders enable liberty, to how liberty enables the evolution of orders.
Three-dimensional (3-D) wake transitions of a steady flow past two side-by-side circular cylinders are investigated through Floquet analysis and direct numerical simulations (DNS) over the gap-to-diameter ratio $g^*$ up to 3.5 and Reynolds number ${\textit {Re}}$ up to 400. When the flows behind two cylinders form in-phase and anti-phase wakes at large $g^*$, the wake transition is similar to the isolated cylinder counterpart, with the critical ${\textit {Re}}$ for the onset of 3-D transition (${\textit {Re}}_{cr-1}$) happens at around 180. At small $g^*$, 3-D transition becomes interestingly complex due to the distinct characteristics formed in base flows. The ${\textit {Re}}_{cr-1}$ suddenly drops to around 60–100 and forms distinct variation trends with $g^*$. Precisely, the ${\textit {Re}}_{cr-1}$ of the single symmetric wake (SS, $g^*\lessapprox 0.25$) is more than half of the isolated cylinder counterpart due to the large length scale of the SS wake. Only mode A is detected in SS. In the asymmetric single wake (ASS, $g^* \approx 0.25\unicode{x2013}0.6$) and flip-flop wake (FF, $g^* \approx 0.6\unicode{x2013}1.8$), the 3-D transition develops at ${\textit {Re}} \approx 103\unicode{x2013}60$ and 75–60, respectively. The decrease in ${\textit {Re}}_{cr-1}$ with increasing $g^*$ is because of the increased level of wake asymmetry in ASS and irregular vortex shedding in FF. Floquet analysis predicts two new unstable modes, namely mode A$'$ and subharmonic mode C$'$, of ASS. Both modes are transient features in 3-D DNS and the flow eventually saturates into a new 3-D mode, mode ASS. The gap flow of mode ASS is distinctly characterised by its time-independent spanwise waviness structure that is deflected towards different transverse directions with a long wavelength of about $14$ cylinder diameters. The 3-D mode of the FF is irregular both temporally and spatially. Variations of ${\textit {Re}}_{cr-1}$ with $g^*$, the characteristics and the physical mechanisms of each 3-D mode are discussed in this study.