We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The savannah–forest mosaic of the Rupununi region of Guyana is a dispersal corridor between large tracts of intact Guiana Shield forests and a subsistence hunting ground for Indigenous Makushi and Wapichan communities. We conducted a camera-trap survey at 199 sites across four major forested habitat types and used multi-species occupancy modelling to determine regional-scale drivers of mammalian occupancy at both species and community levels, accounting for imperfect detection. We detected 47 savannah- and forest-dwelling mammal species, with the occupancy of medium- and large-bodied terrestrial mammal species (community occupancy) positively related to per cent forest cover and negatively to the presence of gallery forest habitat. The occupancy of 15 of 30 species was positively related to forest cover, suggesting the importance of maintaining forested habitat within the broader mosaic comprising savannahs and intermediate habitats for sustaining maximum mammal diversity. Jaguar Panthera onca occupancy was associated with the presence of livestock, and giant anteater Myrmecophaga tridactyla occupancy was negatively associated with distance to the nearest road, both results of concern in relation to potential human–wildlife conflict. The probability of detecting terrestrial mammal species (community detectability) increased away from villages, as did the detectability of two large-bodied, hunted species, the lowland tapir Tapirus terrestris and collared peccary Pecari tajacu, potentially indicating the negative effects of subsistence and commercial hunting in this savannah mosaic habitat. We use our findings to discuss how management strategies for hunting, fire, timber harvest and agriculture within Indigenous titled lands could help ensure the sustainability of these traditional livelihood activities.
A new fossil of Lycidae, Domipteron gaoi n. gen. n. sp., is described from Miocene Dominican amber. The fossil exhibits a combination of characteristics found in both Calopterini and Eurrhacini. To determine its systematic placement, we conducted phylogenetic analyses based on adult morphological features. Our analyses indicate that the new fossil belongs to Calopterini.
The proposed Thermal Sidewall Ice Corer (TSIC) is designed to accurately sample horizontal ice layers of scientific interest, such as tephra layers, basal ice and shear zones, and retrieve ice cores back to the surface. The system features a bending core barrel with a thermal coring head, which bends as it extends from the drill body, enabling it to penetrate horizontal interlayers while maintaining a horizontal position until the ice core is extracted. The bending core barrel is driven by screw pairs, powered by a motor, to apply drilling load and pulling force. As the barrel bends, the ice cores are broken inside and transported to the surface along with the drill via a winch. A camera system has been incorporated into the TSIC to precisely locate the target layer. The corer is suitable for ice boreholes with diameters ranging from 135 to 170 mm, capable of retrieving ice cores with a diameter of 20–30 mm, and achieving a maximum penetration rate of 2 m h−1. The maximum length of ice samples that can be retrieved in a single drilling run is 500 mm. The coring performance for horizontal sampling has been validated through the development and testing of a prototype in the laboratory.
A high-energy pulsed vacuum ultraviolet (VUV) solid-state laser at 177 nm with high peak power by the sixth harmonic of a neodymium-doped yttrium aluminum garnet (Nd:YAG) amplifier in a KBe2BO3F2 prism-coupled device was demonstrated. The ultraviolet (UV) pump laser is a 352 ps pulsed, spatial top-hat super-Gaussian beam at 355 nm. A high energy of a 7.12 mJ VUV laser at 177 nm is obtained with a pulse width of 255 ps, indicating a peak power of 28 MW, and the conversion efficiency is 9.42% from 355 to 177 nm. The measured results fitted well with the theoretical prediction. It is the highest pulse energy and highest peak power ever reported in the VUV range for any solid-state lasers. The high-energy, high-peak-power, and high-spatial-uniformity VUV laser is of great interest for ultra-fine machining and particle-size measurements using UV in-line Fraunhofer holography diagnostics.
Sediments within accretionary complexes, preserving key information on crust growth history of Central Asian Orogenic Belt, did not get enough attention previously. Here, we conduct comprehensive geochemical study on the turbidites from the North Tianshan Accretionary Complex (NTAC) in the Chinese West Tianshan orogen, which is a good example of sediments derived from juvenile materials. The turbidites, composed of sandstone, siltstone, and argillaceous siliceous rocks, are mainly Carboniferous. All the investigated samples have relatively low Chemical Index of Alteration values (35–63) and Plagioclase Index of Alteration values (34–68), indicating relatively weak weathering before erosion and deposition. The sandstone and siltstone, and slate samples display high Index of Compositional Variability values of 0.89–1.50 and 0.89–0.93, suggesting a relatively immature source. The sandstones and siltstones were mainly derived from intermediate igneous rocks, and the slates from felsic igneous rocks, formed in oceanic/continental arc settings. The investigated samples roughly display high positive εNd(t) values (mainly at +5.5 to +7.9, except one spot at +0.8), with corresponding Nd model ages at 672 Ma–522 Ma (except one at ∼1.1 Ga). Combined with the previous studies, we suggest that the turbidites in the NTAC were mainly derived from intermediate to felsic igneous rocks with juvenile arc signature, and thus the northern Chinese West Tianshan is a typical site with significant Phanerozoic crust growth.
Although numerous neuroimaging studies have depicted neural alterations in individuals with obsessive–compulsive disorder (OCD), a psychiatric disorder characterized by intrusive cognitions and repetitive behaviors, the molecular mechanisms connecting brain structural changes and gene expression remain poorly understood.
Methods
This study combined the Allen Human Brain Atlas dataset with neuroimaging data from the Meta-Analysis (ENIGMA) consortium and independent cohorts. Later, partial least squares regression and enrichment analysis were performed to probe the correlation between transcription and cortical thickness variation among adults with OCD.
Results
The cortical map of case-control differences in cortical thickness was spatially correlated with cortical expression of a weighted combination of genes enriched for neurobiologically relevant ontology terms preferentially expressed across different cell types and cortical layers. These genes were specifically expressed in brain tissue, spanning all cortical developmental stages. Protein–protein interaction analysis revealed that these genes coded a network of proteins encompassing various highly interactive hubs.
Conclusions
The study findings bridge the gap between neural structure and transcriptome data in OCD, fostering an integrative understanding of the potential biological mechanisms.
This paper studies the relationship between slack and research and development (R&D) investment by addressing the role of the founder as the ‘microfoundation’ among Chinese newly listed firms. We propose a contingent approach to understanding the slack-R&D investment relationship by examining the influence of the founder’s human capital and social ties, which is distinguished into political and managerial ties. Our results show that the founder’s human capital, measured by its educational level, strengthens the relationship between absorbed and unabsorbed slack resources and R&D investment. We also find that the founder’s managerial ties strengthen the relationship between resource slack and R&D intensity, whereas political ties weaken that link. Our results demonstrate the founder’s crucial role in underpinning resource utilization in newly listed firms and emphasise the importance of social ties in driving firms’ R&D activities in emerging economies.
The distribution of avian haemosporidians of the genus Leucocytozoon in the Neotropics remains poorly understood. Recent studies confirmed their presence in the region using molecular techniques alone, but evidence for gametocytes and data on putative competent hosts for Leucocytozoon are still lacking outside highland areas. We combined morphological and molecular data to characterize a new Leucocytozoon species infecting a non-migratory red-legged seriema (Cariama cristata), the first report of a competent host for Leucocytozoon in Brazil. Leucocytozoon cariamae n. sp. is distinguished from the Leucocytozoon fringillinarum group by its microgametocytes that are not strongly appressed to the host cell nucleus. The bird studied was coinfected with Haemoproteus pulcher, and we present a Bayesian phylogenetic analysis based on nearly complete mitochondrial genomes of these 2 parasites. Leucocytozoon cariamae n. sp. morphology is consistent with our phylogenetic analysis indicating that it does not share a recent common ancestor with the L. fringillinarum group. Haemoproteus pulcher and Haemoproteus catharti form a monophyletic group with Haemocystidium parasites of Reptilia, supporting the polyphyly of the genus Haemoproteus. We also discussed the hypothesis that H. pulcher and H. catharti may be avian Haemocystidium, highlighting the need to study non-passerine parasites to untangle the systematics of Haemosporida.
A 198.8 m deep borehole was drilled through ice to subglacial bedrock in the northwestern marginal part of Princess Elizabeth Land, ~12 km south of Zhongshan Station, in January–February 2019. Three years later, in February 2022, the borehole temperature profile was measured, and the geothermal heat flow (GHF) was estimated using a 1-D time-dependent energy-balance equation. For a depth corresponding to the base of the ice sheet, the GHF was calculated as 72.6 ± 2.3 mW m−2 and temperature −4.53 ± 0.27°C. The regional averages estimated for this area based, generally, on tectonic setting vary from 55 to 66 mW m−2. A higher GHF is interpreted to originate mostly from the occurrence of metamorphic complexes intruded by heat-producing elements in the subglacial bedrock below the drill site.
Breast cancer is a high-risk disease with a high mortality rate among women. Chemotherapy plays an important role in the treatment of breast cancer. However, chemotherapy eventually results in tumours that are resistant to drugs. In recent years, many studies have revealed that the activation of Wnt/β-catenin signalling is crucial for the emergence and growth of breast tumours as well as the development of drug resistance. Additionally, drugs that target this pathway can reverse drug resistance in breast cancer therapy. Traditional Chinese medicine has the properties of multi-target and tenderness. Therefore, integrating traditional Chinese medicine and modern medicine into chemotherapy provides a new strategy for reversing the drug resistance of breast tumours. This paper mainly reviews the possible mechanism of Wnt/β-catenin in promoting the process of breast tumour drug resistance, and the progress of alkaloids extracted from traditional Chinese medicine in the targeting of this pathway in order to reverse the drug resistance of breast cancer.
Lower-crust-derived adakitic rocks in the Gangdese belt provide important constraints on the timing of Tibetan crustal thickening and on the relative contributions of magmatic and tectonic processes. Here we present geochronological and geochemical data for the Wangdui porphyritic monzogranites in the western Gangdese belt. Zircon U–Pb dating yields emplacement ages of 46–44 Ma. All samples have high Sr (321–599 ppm), low Yb (0.76–1.33 ppm) and Y (10.6–18.3 ppm) contents, with high La/Yb (51.1–72.3) and Sr/Y (21.0–51.4) ratios, indicating adakitic affinities. The low MgO (0.97–1.76 wt %), Cr (7.49–53.6 ppm) and Ni (4.75–29.1 ppm) contents, as well as high 87Sr/86Sr(i) (0.7143–0.7145), low ϵNd(t) (−10.4 to −9.8) and zircon ϵHf(t) (−17.7 to 0.4) values, suggest that the Wangdui pluton most likely originated from partial melting of the thickened ancient lower crust. In combination with previously published data, despite the east–west-trending heterogeneity of crustal composition in the Gangdese belt, the La/Yb ratios of magmatic rocks reveal that both western and eastern segments experienced remarkable crustal thickening in the Eocene. However, in contrast to the thickened juvenile lower crust in the eastern segment formed by the underplating of mantle-derived magmas, tectonic shortening plays a more crucial role in thickening of the ancient basement in western Gangdese. In fact, such Eocene-thickened ancient lower-crust-derived adakitic rocks are widely distributed in the central Himalayan–Tibetan orogen. This, together with the extensive development of fold–thrust belts, suggests that tectonic shortening might be the main mechanism accounting for the crustal thickening associated with the India–Asia collision.
Flutter suppression is an important measure to improve fatigue life and enhance the performance of aircraft in modern aircraft design. In order to design more effective controllers for flutter suppression with high efficiency, an efficient reduced-order framework for active/passive hybrid flutter suppression is proposed. The traditional CFD-based ROMs have been successfully applied to active flutter suppression with high accuracy and efficiency. But, when a structure modification is made such as in aeroelastic tailoring and aeroelastic structural optimisation, the structural model should be updated, and the expensive, time-consuming CFD-based ROMs have to be reconstructed; such a process is impractical for passive flutter suppression. To overcome the realistic challenge, an efficient reduced-order framework for active/passive hybrid flutter suppression is proposed by extending an efficient aeroelastic CFD-based POD/ROM which we have developed. The proposed framework is demonstrated and evaluated using an improved AGARD 445.6 wing model. The results show that the proposed framework can accurately predict the aeroelastic response for active/passive hybrid flutter suppression with high efficiency. It provides a powerful tool for active/passive hybrid flutter suppression, and therefore, is ideally suited to design more effective controllers, and may have the potential to reduce the overall cost of aircraft design.
The current study used behavioural and electroencephalograph measures to compare the transferability of three home-based interventions — cognitive training (CT), neurofeedback training (NFT), and CT combined with NFT — for reducing symptoms in children with attention-deficit/hyperactivity disorder (AD/HD). Following a multiple-baseline single-case experimental design, twelve children were randomised to a training condition. Each child completed a baseline phase, followed by an intervention phase. The intervention phase consisted of 20 sessions of at-home training. Tau-U analysis and standardised visual analysis were adopted to detect effects. Results showed that CT improved inhibitory function and NFT improved alpha EEG activity and working memory. The combined condition, which was a reduced ‘dose’ of CT and NFT, did not show any improvements. The three conditions did not alleviate AD/HD symptoms. While CT and NFT may have transfer effects on executive functions, considering the lack of improvement in symptoms, this study does not support CT and NFT on their own as a treatment for children with AD/HD.
Detailed balance of a chemical reaction network can be defined in several different ways. Here we investigate the relationship among four types of detailed balance conditions: deterministic, stochastic, local, and zero-order local detailed balance. We show that the four types of detailed balance are equivalent when different reactions lead to different species changes and are not equivalent when some different reactions lead to the same species change. Under the condition of local detailed balance, we further show that the system has a global potential defined over the whole space, which plays a central role in the large deviation theory and the Freidlin–Wentzell-type metastability theory of chemical reaction networks. Finally, we provide a new sufficient condition for stochastic detailed balance, which is applied to construct a class of high-dimensional chemical reaction networks that both satisfies stochastic detailed balance and displays multistability.
In this paper, we present results from an experiment using EEG to measure brain activity and explore EEG frequency power associated with gender differences of professional industrial designers while performing two prototypical stages of constrained and open design tasks, problem-solving and design sketching. Results indicate no main effect of gender. However, among other main effects, a consistent main effect of hemisphere for the six frequency bands under analysis was found. In the problem-solving stage, male designers show higher alpha and beta bands in channels of the prefrontal cortices and female designers in the right occipitotemporal cortex and secondary visual cortices. In the design sketching stage, male designers show higher alpha and beta bands in the right prefrontal cortex, and female designers in the right temporal cortex and left prefrontal cortex, where higher theta is also found. Prioritising different cognitive functions seem to play a role in each gender's approach to constrained and open design tasks. Results can be useful to design professionals, students and design educators, and for the development of methodological approaches in design research and education.
Creativity is crucial in design. In recent years, growing computational methods are applied to improve the creativity of design. This paper aims to explore an approach to generate creative design images with specific feature or design style. A Generative Adversarial Network model is applied in the approach to learn the specific design style. The target products will be projected into the latent space of model to transfer their styles and generate images. The generated images combine the features of the specific design style and the features of the target product. In the experiment, the approach using the generated images to inspire the human designer to generate the creative design in according styles. According to the primary verification by participants, the generated images can bring novelty and surprise to participants, which gain the positive impact on human creativity.
Subglacial lake exploration is of great interest to the science community. RECoverable Autonomous Sonde (RECAS) provides an exploration tool to measure and sample subglacial lake environments while the subglacial lake remains isolated from the glacier surface and atmosphere. This paper presents an electronic control system design of 200 m prototype of RECAS. The proposed electronic control system consists of a surface system, a downhole control system, and a power transfer and communication system. The downhole control system is the core element of RECAS, and is responsible for sonde status monitoring, sonde motion control, subglacial water sampling and in situ analysis. A custom RS485 temperature sensor was developed to cater for the limited size and depth requirements of the system. We adopted a humidity-based measurement to monitor for a housing leak. This condition is because standard leak detection monitoring of water conductivity may be inapplicable to pure ice in Antarctica. A water sampler control board was designed to control the samplers and monitor the on/off state. A high-definition camera system with built-in storage and self-heating ability was designed to perform the video recording in the subglacial lake. The proposed electronic control system is proven effective after a series of tests.
A series of new synthetic armored cables were developed and tested to ensure that they were suitable for use with the RECoverable Autonomous Sonde (RECAS), which is a newly designed freezing-in thermal ice probe. The final version of the cable consists of two concentric conductors that can be used as the power and signal lines. Two polyfluoroalkoxy jackets are used for electrical insulation (one for insulation between conductors, and the other for insulation of the outer conductor). The outer insulation layer is coated by polyurethane jacket to seal the connections between the cable and electrical units. The 0.65 mm thick strength member is made from aramid fibers woven together. To hold these aramid fibers in place, a sheathing layer was produced from a polyamide fabric cover net. The outer diameter of the final version of the cable is ~6.1 mm. The permissible bending radius is as low as 17–20 mm. The maximal breaking force under straight tension is ~12.2 kN. The cable weight is only ~0.061 kg m−1. The mechanical and electrical properties and environmental suitability of the cable were determined through laboratory testing and joint testing with the probe.