We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Landscape evolution in karst terrains affects both subterranean and surface settings. For better understanding of controlling processes and connections between the two, multiple geochronometers were used to date sediments and speleothems in upper-level passages of Fitton Cave adjacent to the Buffalo River, northern Arkansas, within the southern Ozark Plateau. Burial cosmogenic-nuclide dating of coarse sediments indicates that gravel pulses washed into upper passages at 2.2 Ma and 1.25 Ma. These represent the oldest epigenetic cave deposits documented in this region. Associated sands and clay-rich sediments mostly have reversed magnetic polarity and thermally transferred optically stimulated luminescence dates of 1.2 to 1.0 Ma. Abandonment of these upper passages began before 0.72 Ma, when coarse sediment was deposited in a passage incised below older sediment. Maximum U-series dates of 0.7–0.4 Ma for flowstones capping clastic deposits mark the stabilization of older sediments and a change to vadose conditions that allowed post–0.4 Ma stalagmite growth. Resulting valley incision rates since 0.85 Ma are estimated at 27 m/Ma. Coarse cave-sediment pulses correlate to Laurentide glacial tills about 300 km to the north, suggesting climate influence on periglacial sediment production. Dated cave sediments also may correlate with undated older strath terraces preserved at similar heights above the Buffalo River.
Functional impairment in daily activities, such as work and socializing, is part of the diagnostic criteria for major depressive disorder and most anxiety disorders. Despite evidence that symptom severity and functional impairment are partially distinct, functional impairment is often overlooked. To assess whether functional impairment captures diagnostically relevant genetic liability beyond that of symptoms, we aimed to estimate the heritability of, and genetic correlations between, key measures of current depression symptoms, anxiety symptoms, and functional impairment.
Methods
In 17,130 individuals with lifetime depression or anxiety from the Genetic Links to Anxiety and Depression (GLAD) Study, we analyzed total scores from the Patient Health Questionnaire-9 (depression symptoms), Generalized Anxiety Disorder-7 (anxiety symptoms), and Work and Social Adjustment Scale (functional impairment). Genome-wide association analyses were performed with REGENIE. Heritability was estimated using GCTA-GREML and genetic correlations with bivariate-GREML.
Results
The phenotypic correlations were moderate across the three measures (Pearson’s r = 0.50–0.69). All three scales were found to be under low but significant genetic influence (single-nucleotide polymorphism-based heritability [h2SNP] = 0.11–0.19) with high genetic correlations between them (rg = 0.79–0.87).
Conclusions
Among individuals with lifetime depression or anxiety from the GLAD Study, the genetic variants that underlie symptom severity largely overlap with those influencing functional impairment. This suggests that self-reported functional impairment, while clinically relevant for diagnosis and treatment outcomes, does not reflect substantial additional genetic liability beyond that captured by symptom-based measures of depression or anxiety.
Next-generation X-ray satellite telescopes such as XRISM, NewAthena and Lynx will enable observations of exotic astrophysical sources at unprecedented spectral and spatial resolution. Proper interpretation of these data demands that the accuracy of the models is at least within the uncertainty of the observations. One set of quantities that might not currently meet this requirement is transition energies of various astrophysically relevant ions. Current databases are populated with many untested theoretical calculations. Accurate laboratory benchmarks are required to better understand the coming data. We obtained laboratory spectra of X-ray lines from a silicon plasma at an average spectral resolving power of $\sim$7500 with a spherically bent crystal spectrometer on the Z facility at Sandia National Laboratories. Many of the lines in the data are measured here for the first time. We report measurements of 53 transitions originating from the K-shells of He-like to B-like silicon in the energy range between $\sim$1795 and 1880 eV (6.6–6.9 Å). The lines were identified by qualitative comparison against a full synthetic spectrum calculated with ATOMIC. The average fractional uncertainty (uncertainty/energy) for all reported lines is ${\sim}5.4 \times 10^{-5}$. We compare the measured quantities against transition energies calculated with RATS and FAC as well as those reported in the NIST ASD and XSTAR’s uaDB. Average absolute differences relative to experimentally measured values are 0.20, 0.32, 0.17 and 0.38 eV, respectively. All calculations/databases show good agreement with the experimental values; NIST ASD shows the closest match overall.
Knowledge of the status of ecosystems is vital to help develop and implement conservation strategies. This is particularly relevant to the Arctic where the need for biodiversity conservation and monitoring has long been recognised, but where issues of local capacity and logistic barriers make surveys challenging. This paper demonstrates how long-term monitoring programmes outside the Arctic can contribute to developing composite trend indicators, using monitoring of annual abundance and population-level reproduction of species of migratory Arctic-breeding waterbirds on their temperate non-breeding areas. Using data from the UK and the Netherlands, countries with year-round waterbird monitoring schemes and supporting relevant shares of Arctic-breeding populations of waterbirds, we present example multi-species abundance and productivity indicators related to the migratory pathways used by different biogeographical populations of Arctic-breeding wildfowl and wader species in the East Atlantic Flyway. These composite trend indicators show that long-term increases in population size have slowed markedly in recent years and in several cases show declines over, at least, the last decade. These results constitute proof of concept. Some other non-Arctic countries located on the flyways of Arctic-breeding waterbirds also annually monitor abundance and breeding success, and we advocate that future development of “Arctic waterbird indicators” should be as inclusive of data as possible to derive the most robust outputs and help account for effects of current changes in non-breeding waterbird distributions. The incorporation of non-Arctic datasets into assessments of the status of Arctic biodiversity is recognised as highly desirable, because logistic constraints in monitoring within the Arctic region limit effective population-scale monitoring there, in effect enabling “monitoring at a distance”.
Patients with posttraumatic stress disorder (PTSD) exhibit smaller regional brain volumes in commonly reported regions including the amygdala and hippocampus, regions associated with fear and memory processing. In the current study, we have conducted a voxel-based morphometry (VBM) meta-analysis using whole-brain statistical maps with neuroimaging data from the ENIGMA-PGC PTSD working group.
Methods
T1-weighted structural neuroimaging scans from 36 cohorts (PTSD n = 1309; controls n = 2198) were processed using a standardized VBM pipeline (ENIGMA-VBM tool). We meta-analyzed the resulting statistical maps for voxel-wise differences in gray matter (GM) and white matter (WM) volumes between PTSD patients and controls, performed subgroup analyses considering the trauma exposure of the controls, and examined associations between regional brain volumes and clinical variables including PTSD (CAPS-4/5, PCL-5) and depression severity (BDI-II, PHQ-9).
Results
PTSD patients exhibited smaller GM volumes across the frontal and temporal lobes, and cerebellum, with the most significant effect in the left cerebellum (Hedges’ g = 0.22, pcorrected = .001), and smaller cerebellar WM volume (peak Hedges’ g = 0.14, pcorrected = .008). We observed similar regional differences when comparing patients to trauma-exposed controls, suggesting these structural abnormalities may be specific to PTSD. Regression analyses revealed PTSD severity was negatively associated with GM volumes within the cerebellum (pcorrected = .003), while depression severity was negatively associated with GM volumes within the cerebellum and superior frontal gyrus in patients (pcorrected = .001).
Conclusions
PTSD patients exhibited widespread, regional differences in brain volumes where greater regional deficits appeared to reflect more severe symptoms. Our findings add to the growing literature implicating the cerebellum in PTSD psychopathology.
Multicenter clinical trials are essential for evaluating interventions but often face significant challenges in study design, site coordination, participant recruitment, and regulatory compliance. To address these issues, the National Institutes of Health’s National Center for Advancing Translational Sciences established the Trial Innovation Network (TIN). The TIN offers a scientific consultation process, providing access to clinical trial and disease experts who provide input and recommendations throughout the trial’s duration, at no cost to investigators. This approach aims to improve trial design, accelerate implementation, foster interdisciplinary teamwork, and spur innovations that enhance multicenter trial quality and efficiency. The TIN leverages resources of the Clinical and Translational Science Awards (CTSA) program, complementing local capabilities at the investigator’s institution. The Initial Consultation process focuses on the study’s scientific premise, design, site development, recruitment and retention strategies, funding feasibility, and other support areas. As of 6/1/2024, the TIN has provided 431 Initial Consultations to increase efficiency and accelerate trial implementation by delivering customized support and tailored recommendations. Across a range of clinical trials, the TIN has developed standardized, streamlined, and adaptable processes. We describe these processes, provide operational metrics, and include a set of lessons learned for consideration by other trial support and innovation networks.
Community-engaged research is essential to advance the implementation of evidence-based practices, but engagement quality is rarely assessed. We evaluated community health centers’ (CHCs) experiences partnering with the Implementation Science Center for Cancer Control Equity (ISCCCE) using an online survey of 59 CHC staff. Of 38 respondents (64.4% response rate), most perceived their engagement positively, with over 92% feeling respected by ISCCCE collaborators and perceiving projects as beneficial. Limited staff time and resources were the main challenges identified. This study suggests the utility of gathering feedback to evaluate community research engagement and inform adaptations of research processes to optimize partnership quality.
We present the first results from a new backend on the Australian Square Kilometre Array Pathfinder, the Commensal Realtime ASKAP Fast Transient COherent (CRACO) upgrade. CRACO records millisecond time resolution visibility data, and searches for dispersed fast transient signals including fast radio bursts (FRB), pulsars, and ultra-long period objects (ULPO). With the visibility data, CRACO can localise the transient events to arcsecond-level precision after the detection. Here, we describe the CRACO system and report the result from a sky survey carried out by CRACO at 110-ms resolution during its commissioning phase. During the survey, CRACO detected two FRBs (including one discovered solely with CRACO, FRB 20231027A), reported more precise localisations for four pulsars, discovered two new RRATs, and detected one known ULPO, GPM J1839 $-$10, through its sub-pulse structure. We present a sensitivity calibration of CRACO, finding that it achieves the expected sensitivity of 11.6 Jy ms to bursts of 110 ms duration or less. CRACO is currently running at a 13.8 ms time resolution and aims at a 1.7 ms time resolution before the end of 2024. The planned CRACO has an expected sensitivity of 1.5 Jy ms to bursts of 1.7 ms duration or less and can detect $10\times$ more FRBs than the current CRAFT incoherent sum system (i.e. 0.5 $-$2 localised FRBs per day), enabling us to better constrain the models for FRBs and use them as cosmological probes.
Accurate diagnosis of bipolar disorder (BPD) is difficult in clinical practice, with an average delay between symptom onset and diagnosis of about 7 years. A depressive episode often precedes the first manic episode, making it difficult to distinguish BPD from unipolar major depressive disorder (MDD).
Aims
We use genome-wide association analyses (GWAS) to identify differential genetic factors and to develop predictors based on polygenic risk scores (PRS) that may aid early differential diagnosis.
Method
Based on individual genotypes from case–control cohorts of BPD and MDD shared through the Psychiatric Genomics Consortium, we compile case–case–control cohorts, applying a careful quality control procedure. In a resulting cohort of 51 149 individuals (15 532 BPD patients, 12 920 MDD patients and 22 697 controls), we perform a variety of GWAS and PRS analyses.
Results
Although our GWAS is not well powered to identify genome-wide significant loci, we find significant chip heritability and demonstrate the ability of the resulting PRS to distinguish BPD from MDD, including BPD cases with depressive onset (BPD-D). We replicate our PRS findings in an independent Danish cohort (iPSYCH 2015, N = 25 966). We observe strong genetic correlation between our case–case GWAS and that of case–control BPD.
Conclusions
We find that MDD and BPD, including BPD-D are genetically distinct. Our findings support that controls, MDD and BPD patients primarily lie on a continuum of genetic risk. Future studies with larger and richer samples will likely yield a better understanding of these findings and enable the development of better genetic predictors distinguishing BPD and, importantly, BPD-D from MDD.
This systematic review evaluates the use of Normothermic Machine Perfusion (NMP) as a testbed for developing peripheral nerve and muscle interfaces for bionic prostheses. Our findings suggest that NMP offers a viable alternative to traditional models, with significant implications for future research and clinical applications. A literature search was performed using Ovid MEDLINE (1946 to October 2023), revealing 559 abstracts.
No studies using nerve and/or muscle electrodes for the testing or development of bionic interface technologies were identified, except for one conference abstract. NMP could serve as a test bed for future development of interface biocompatibility, selectivity, stability and data transfer, whilst complying with ethical practices and potentially offering greater relevance for human translation. Implemention of machine perfusion requires experienced personnel. Encompassing artificial intelligence alongside machine learning will provide a significant contribution to advancing interface technologies for multiple neurological disorders.
The Students Participating as Ambassadors for Research in Kentucky (SPARK) program provides novel health equity research training and targeted mentorship for undergraduates, particularly those from groups underrepresented in the biomedical and behavioral research and workforce. SPARK aims to address inadequate diversity in the medical and scientific research fields by providing comprehensive research mentorship and skill-building. Unlike most existing research training programs that are brief, focus on laboratory research, or are limited to graduate students and junior faculty, SPARK delivers a 16-month intensive behavioral and population health science training, equipping students with needed tools to conceptualize, plan, execute, and analyze their own health equity research study. Trainees complete didactic coursework on health equity, study design and proposal development, data analysis, and ethics. Students receive a stipend and research expenses, and multiple mentors guide them in creating original research projects for which they serve as Principal Investigator. Students disseminate their findings annually at an academic research conference as a capstone. Evaluation data from the first three cohorts suggest SPARK has been pivotal in preparing students for graduate studies and research careers in health equity and behavioral and population health sciences, providing strong support for further investments in similar undergraduate research training models.
Young stellar objects (YSOs) are protostars that exhibit bipolar outflows fed by accretion disks. Theories of the transition between disk and outflow often involve a complex magnetic field structure thought to be created by the disk coiling field lines at the jet base; however, due to limited resolution, these theories cannot be confirmed with observation and thus may benefit from laboratory astrophysics studies. We create a dynamically similar laboratory system by driving a $\sim$1 MA current pulse with a 200 ns rise through a $\approx$2 mm-tall Al cylindrical wire array mounted to a three-dimensional (3-D)-printed, stainless steel scaffolding. This system creates a plasma that converges on the centre axis and ejects cm-scale bipolar outflows. Depending on the chosen 3-D-printed load path, the system may be designed to push the ablated plasma flow radially inwards or off-axis to make rotation. In this paper, we present results from the simplest iteration of the load which generates radially converging streams that launch non-rotating jets. The temperature, velocity and density of the radial inflows and axial outflows are characterized using interferometry, gated optical and ultraviolet imaging, and Thomson scattering diagnostics. We show that experimental measurements of the Reynolds number and sonic Mach number in three different stages of the experiment scale favourably to the observed properties of YSO jets with $Re\sim 10^5\unicode{x2013}10^9$ and $M\sim 1\unicode{x2013}10$, while our magnetic Reynolds number of $Re_M\sim 1\unicode{x2013}15$ indicates that the magnetic field diffuses out of our plasma over multiple hydrodynamical time scales. We compare our results with 3-D numerical simulations in the PERSEUS extended magnetohydrodynamics code.
Despite dietary guidance in over 90 countries and resources like the UK’s Eatwell guide, most individuals do not adhere to or achieve dietary aims(1,2). Specifically in the UK, population intakes of free sugars remain above the <5% recommendation, at around ∼10% of total energy intakes(3). To improve adherence to messages such as ‘reducing free sugars’, it may be helpful to identify barriers and facilitators to adherence whilst individuals attempt to modify their dietary patterns.
Participants were randomly selected from a randomised controlled trial investigating the effects of three different types of advice to reduce free sugars vs control on reducing free sugar intakes(4). A semi-structured interview explored barriers and facilitators to dietary adherence. Covariate adaptive randomisation ensured equal interviews at all timepoints across the 12-week study period and from participants in each trial arm. Data were analysed using framework analysis(5).
Sixty-two interviews were conducted across a 12-month period between 2021-2022. Seven themes for barriers and facilitators to recommendation adherence, encompassing 14 subthemes, were identified: 1) Proof and impact; 2) Realities of life; 3) Personal balance and empowerment; 4) Habitual approach; 5) Is it possible?; 6) Extensive awareness and viewpoint; and 7) Power of knowledge. Emergent themes sit within a context where individuals were challenged to reduce their intakes of free sugars and/or accurately record dietary intakes, thus they relate specifically to a dietary recording and free sugar reducing scenario. Participant interviews detected both internal and external environmental factors contributing to approaches to change. These factors were interrelated to self and community awareness, describing how individuals may utilise knowledge and understanding. Intervention participants reported all themes more than control participants; excepting the sub theme ‘limited impact.’ There were no observable reporting differences between the three intervention groups. Over the 12 -week study period, the positive sub-theme ‘enables’ within the theme ‘power of knowledge’ was more prominent at intervention delivery (week-1) than week-12. Additionally sub themes ‘active’ and ‘empower’ were reported more in those with higher adherence scores. These results suggest that dietary recommendations may need to be adapted to incorporate the stage at which dietary behavioural change takes place, with some focus also on maintenance as well as change. Overall, participant reports revealed that dietary advice needs to be appropriate for the person receiving it, easily understood, applicable, and actively engaging.
Our findings, when considered with the wider literature, may help us to better understand attempts to make dietary changes based on dietary advice, and support an individualised approach to dietary management. This greater understanding will help future advice to reduce free sugar intakes, including policy and public health initiatives.
In response to the COVID-19 pandemic, we rapidly implemented a plasma coordination center, within two months, to support transfusion for two outpatient randomized controlled trials. The center design was based on an investigational drug services model and a Food and Drug Administration-compliant database to manage blood product inventory and trial safety.
Methods:
A core investigational team adapted a cloud-based platform to randomize patient assignments and track inventory distribution of control plasma and high-titer COVID-19 convalescent plasma of different blood groups from 29 donor collection centers directly to blood banks serving 26 transfusion sites.
Results:
We performed 1,351 transfusions in 16 months. The transparency of the digital inventory at each site was critical to facilitate qualification, randomization, and overnight shipments of blood group-compatible plasma for transfusions into trial participants. While inventory challenges were heightened with COVID-19 convalescent plasma, the cloud-based system, and the flexible approach of the plasma coordination center staff across the blood bank network enabled decentralized procurement and distribution of investigational products to maintain inventory thresholds and overcome local supply chain restraints at the sites.
Conclusion:
The rapid creation of a plasma coordination center for outpatient transfusions is infrequent in the academic setting. Distributing more than 3,100 plasma units to blood banks charged with managing investigational inventory across the U.S. in a decentralized manner posed operational and regulatory challenges while providing opportunities for the plasma coordination center to contribute to research of global importance. This program can serve as a template in subsequent public health emergencies.
Positive, negative and disorganised psychotic symptom dimensions are associated with clinical and developmental variables, but differing definitions complicate interpretation. Additionally, some variables have had little investigation.
Aims
To investigate associations of psychotic symptom dimensions with clinical and developmental variables, and familial aggregation of symptom dimensions, in multiple samples employing the same definitions.
Method
We investigated associations between lifetime symptom dimensions and clinical and developmental variables in two twin and two general psychosis samples. Dimension symptom scores and most other variables were from the Operational Criteria Checklist. We used logistic regression in generalised linear mixed models for combined sample analysis (n = 875 probands). We also investigated correlations of dimensions within monozygotic (MZ) twin pairs concordant for psychosis (n = 96 pairs).
Results
Higher symptom scores on all three dimensions were associated with poor premorbid social adjustment, never marrying/cohabiting and earlier age at onset, and with a chronic course, most strongly for the negative dimension. The positive dimension was also associated with Black and minority ethnicity and lifetime cannabis use; the negative dimension with male gender; and the disorganised dimension with gradual onset, lower premorbid IQ and substantial within twin-pair correlation. In secondary analysis, disorganised symptoms in MZ twin probands were associated with lower premorbid IQ in their co-twins.
Conclusions
These results confirm associations that dimensions share in common and strengthen the evidence for distinct associations of co-occurring positive symptoms with ethnic minority status, negative symptoms with male gender and disorganised symptoms with substantial familial influences, which may overlap with influences on premorbid IQ.
This editorial considers the value and nature of academic psychiatry by asking what defines the specialty and psychiatrists as academics. We frame academic psychiatry as a way of thinking that benefits clinical services and discuss how to inspire the next generation of academics.
Develop and implement a system in the Veterans Health Administration (VA) to alert local medical center personnel in real time when an acute- or long-term care patient/resident is admitted to their facility with a history of colonization or infection with a multidrug-resistant organism (MDRO) previously identified at any VA facility across the nation.
Methods:
An algorithm was developed to extract clinical microbiology and local facility census data from the VA Corporate Data Warehouse initially targeting carbapenem-resistant Enterobacterales (CRE) and methicillin-resistant Staphylococcus aureus (MRSA). The algorithm was validated with chart review of CRE cases from 2010-2018, trialed and refined in 24 VA healthcare systems over two years, expanded to other MDROs and implemented nationwide on 4/2022 as “VA Bug Alert” (VABA). Use through 8/2023 was assessed.
Results:
VABA performed well for CRE with recall of 96.3%, precision of 99.8%, and F1 score of 98.0%. At the 24 trial sites, feedback was recorded for 1,011 admissions with a history of CRE (130), MRSA (814), or both (67). Among Infection Preventionists and MDRO Prevention Coordinators, 338 (33%) reported being previously unaware of the information, and of these, 271 (80%) reported they would not have otherwise known this information. By fourteen months after nationwide implementation, 113/130 (87%) VA healthcare systems had at least one VABA subscriber.
Conclusions:
A national system for alerting facilities in real-time of patients admitted with an MDRO history was successfully developed and implemented in VA. Next steps include understanding facilitators and barriers to use and coordination with non-VA facilities nationwide.
Understanding characteristics of healthcare personnel (HCP) with SARS-CoV-2 infection supports the development and prioritization of interventions to protect this important workforce. We report detailed characteristics of HCP who tested positive for SARS-CoV-2 from April 20, 2020 through December 31, 2021.
Methods:
CDC collaborated with Emerging Infections Program sites in 10 states to interview HCP with SARS-CoV-2 infection (case-HCP) about their demographics, underlying medical conditions, healthcare roles, exposures, personal protective equipment (PPE) use, and COVID-19 vaccination status. We grouped case-HCP by healthcare role. To describe residential social vulnerability, we merged geocoded HCP residential addresses with CDC/ATSDR Social Vulnerability Index (SVI) values at the census tract level. We defined highest and lowest SVI quartiles as high and low social vulnerability, respectively.
Results:
Our analysis included 7,531 case-HCP. Most case-HCP with roles as certified nursing assistant (CNA) (444, 61.3%), medical assistant (252, 65.3%), or home healthcare worker (HHW) (225, 59.5%) reported their race and ethnicity as either non-Hispanic Black or Hispanic. More than one third of HHWs (166, 45.2%), CNAs (283, 41.7%), and medical assistants (138, 37.9%) reported a residential address in the high social vulnerability category. The proportion of case-HCP who reported using recommended PPE at all times when caring for patients with COVID-19 was lowest among HHWs compared with other roles.
Conclusions:
To mitigate SARS-CoV-2 infection risk in healthcare settings, infection prevention, and control interventions should be specific to HCP roles and educational backgrounds. Additional interventions are needed to address high social vulnerability among HHWs, CNAs, and medical assistants.
A new crinoid fauna has been discovered in the Upper Ordovician (Katian) Martinsburg Formation at a small shale quarry, locally known as the ‘Shale Bank,’ on the Shawangunk Ridge in Ulster County, NY. The assemblage, which is from a relatively low energy, offshore mud-bottom environment, includes four identified species, including a new species of glyptocrinid camerate, Pycnocrinus mohonkensis n. sp., described herein. Crinoid taxa in order of increasing branch density in the assemblage include (1) the dicyclic inadunate Merocrinus curtus with irregularly isotomous and heterotomous, non-pinnulate arms and a stout cylindrical column exceeding 700 mm; (2) the disparids Cincinnaticrinus varibrachialus, with heterotomous non pinnulate arms, and Ectenocrinus simplex, with extensively branched ramulate arms and meric columns of 460–500 mm; and (3) the camerate Pycnocrinus mohonkensis n. sp., with uniserial pinnulate arms and a somewhat shorter column. Some cylindrical stems with nodose and holomeric columnals are thought to belong to unknown camerate crinoids with pinnulate arms. Filtration theory is used to model food capture in the Martinsburg crinoids. Surprisingly, even densely pinnulate camerates were able to survive in this setting, suggesting that ambient currents attained velocities exceeding 25 cm/sec even in this offshore setting. Similar assemblages were widespread in eastern Laurentia during the Late Ordovician.
To implement and evaluate a point-of-care (POC) molecular testing platform for respiratory viruses in congregate living settings (CLS).
Design:
Prospective quality improvement study.
Setting:
Seven CLS, including three nursing homes and four independent-living facilities.
Participants:
Residents of CLS.
Methods:
A POC platform for COVID-19, influenza A and B, and respiratory syncytial virus was implemented at participating CLS from December 1, 2022 to April 15, 2023. Residents with respiratory symptoms underwent paired testing, with respiratory specimens tested first with the POC platform and then delivered to an off-site laboratory for multiplex respiratory virus panel (MRVP) polymerase chain reaction (PCR) as per standard protocol. Turn-around time and diagnostic accuracy of the POC platform were compared against MRVP PCR. In an exploratory analysis, time to outbreak declaration among participating CLS was compared against a convenience sample of 19 CLS that did not use the POC platform.
Results:
A total of 290 specimens that underwent paired testing were included. Turn-around time to result was significantly shorter with the POC platform compared to MRVP PCR, with median difference of 36.2 hours (interquartile range 21.8–46.4 hours). The POC platform had excellent diagnostic accuracy compared to MRVP PCR, with area under the curve statistic of .96. Time to outbreak declaration was shorter in CLS that used the POC platform compared to CLS that did not.
Conclusion:
Rapid POC testing platforms for respiratory viruses can be implemented in CLS, with high diagnostic accuracy, expedited turn-around times, and shorter time to outbreak declaration.