We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Patients with posttraumatic stress disorder (PTSD) exhibit smaller regional brain volumes in commonly reported regions including the amygdala and hippocampus, regions associated with fear and memory processing. In the current study, we have conducted a voxel-based morphometry (VBM) meta-analysis using whole-brain statistical maps with neuroimaging data from the ENIGMA-PGC PTSD working group.
Methods
T1-weighted structural neuroimaging scans from 36 cohorts (PTSD n = 1309; controls n = 2198) were processed using a standardized VBM pipeline (ENIGMA-VBM tool). We meta-analyzed the resulting statistical maps for voxel-wise differences in gray matter (GM) and white matter (WM) volumes between PTSD patients and controls, performed subgroup analyses considering the trauma exposure of the controls, and examined associations between regional brain volumes and clinical variables including PTSD (CAPS-4/5, PCL-5) and depression severity (BDI-II, PHQ-9).
Results
PTSD patients exhibited smaller GM volumes across the frontal and temporal lobes, and cerebellum, with the most significant effect in the left cerebellum (Hedges’ g = 0.22, pcorrected = .001), and smaller cerebellar WM volume (peak Hedges’ g = 0.14, pcorrected = .008). We observed similar regional differences when comparing patients to trauma-exposed controls, suggesting these structural abnormalities may be specific to PTSD. Regression analyses revealed PTSD severity was negatively associated with GM volumes within the cerebellum (pcorrected = .003), while depression severity was negatively associated with GM volumes within the cerebellum and superior frontal gyrus in patients (pcorrected = .001).
Conclusions
PTSD patients exhibited widespread, regional differences in brain volumes where greater regional deficits appeared to reflect more severe symptoms. Our findings add to the growing literature implicating the cerebellum in PTSD psychopathology.
Obruchevodid petalodonts are rare small chondrichthyans known from nearly complete to partial skeletons from the Upper Mississippian (Serpukhovian) Bear Gulch Limestone of central Montana and isolated teeth from the Upper Mississippian Bangor Limestone of northern Alabama. New records of obruchevodid petalodonts are presented here from the Middle Mississippian (Viséan) Joppa Member of the Ste. Genevieve Formation at Mammoth Cave National Park, Kentucky. Obruchevodids are here represented by multiple teeth of a new taxon, Clavusodens mcginnisi n. gen. n. sp., and a single tooth referred to ?Netsepoye sp. Clavusodens mcginnisi n. gen. n. sp. is characterized by teeth with pointed mesiodistal and lingual margins and more robust chisel-like cusps on the anterolateral and distolateral teeth. The suggestion that obruchevodid petalodonts evolved to inhabit complex reef-like environments and other nearshore habitats with a feeding ecology analogous to extant triggerfish is explored and discussed.
Using [18F]altanserin, a serotonin 2A receptor (5-HT2AR) antagonist Positron Emission Tomography (PET) tracer, a positive association between cortical 5-HT2AR binding and the inward-directed facets of neuroticism has been demonstrated in healthy individuals. Psilocybin, a 5-HT2AR agonist, shows promise for the treatment of depression, reducing neuroticism and mood symptoms potentially via hypothalamic-pituitary-adrenal (HPA) modulation. 5-HT2AR and neuroticism are both modulated by HPA axis function.
Aims
In this study, we examined whether the association between 5-HT2AR binding and the inward facets of neuroticism can be replicated in an independent healthy cohort using the new 5-HT2AR agonist tracer [11C]Cimbi-36, and if their association is moderated by cortisol awakening response (CAR), an index of HPA axis function. If so, this could advance mechanistic insights into interventions that target the 5-HT2AR and reduce neuroticism.
Method
Eighty healthy volunteers underwent [11C]Cimbi-36 PET scans and completed the NEO personality inventory (NEO-PI-R) for the assessment of neuroticism. Salivary samples were available for determination of CAR in 70 of the participants. Using linear latent variable models, we evaluated the association between 5-HT2AR binding and inward facets of neuroticism, namely depression, anxiety, self-consciousness and vulnerability to stress, and whether CAR moderated this association.
Results
The study confirms the positive association between 5-HT2AR binding and the inward facets of neuroticism (β = 0.01, 95% CI = [0.0005: 0.02], P = 0.04), and this association is independent of CAR (P = 0.33).
Conclusions
The findings prompt consideration of whether novel interventions such as psilocybin that actively targets 5-HT2AR and causes changes in personality could be particularly beneficial if implemented as a targeted approach based on neuroticism profiles.
We conduct direct numerical simulations (DNS) to study the temporal and spatial developments of the roll waves on a laminar sheet flow of Newtonian fluid. The DNS unveil the physics of the wavefront and show the limitation of the widely used shallow-layer approximations. The most prominent wave, the front runner, is determined by the DNS for the first time in studying the spatial development of the laminar sheet flow with negligible surface tension. Depending on the Froude and Reynolds numbers, the front runner can be a multi-peaked undular bore or a single-peaked non-breaking or breaking wave. The simulation has uncovered an extended region behind the wavefront, where the bed-friction stress is much higher than the corresponding friction in the undisturbed uniform flow. It also produces an uplift velocity needed in the description of wave breaking. For comparison, we also examine the nonlinear development of the instability using two-equation and four-equation shallow-layer models. The two-equation shallow-layer model has produced the bulk of the wave profile but is deficient because it fails to predict the uplift velocity and the substantial increase in bed friction in the frontal region. The four-equation shallow-layer model correctly predicts the bed friction but cannot produce the breaking wave. The simulations also determine the celerity and amplitude of the front runner to follow a linear relationship, qualitatively similar to the roll waves in a turbulent flow.
Previous studies by Electron Spin Resonance (ESR) have established the substitution of Fe3+ and Mg2+ in the kaolinite structure. It is shown that Fe2+ can substitute in kaolinite and stabilize defects which are detectable by ESR in a manner identical to Mg2+. The development of methods of preparing a synthetic kaolinite doped with Fe2+ is described in detail. It is shown that the main ESR signals, which occur at g = 2.0 in natural kaolinites and which previously have been interpreted in terms of iron and magnesium, can be attributed to iron alone.
The classical Cox–Voinov theory of contact line motion provides a relation between the macroscopically observable contact angle, and the microscopic wetting angle as a function of contact-line velocity. Here, we investigate how viscoelasticity, specifically the normal stress effect, modifies the wetting dynamics. Using the thin film equation for the second-order fluid, it is found that the normal stress effect is dominant at small scales yet can significantly affect macroscopic motion. We show that the effect can be incorporated in the Cox–Voinov theory through an apparent microscopic angle, which differs from the true microscopic angle. The theory is applied to the classical problems of drop spreading and dip coating, which shows how normal stress facilitates (inhibits) the motion of advancing (receding) contact lines. For rapid advancing motion, the apparent microscopic angle can tend to zero, in which case the dynamics is described by a regime that was already anticipated in Boudaoud (Eur. Phys. J. E, vol. 22, 2007, pp. 107–109).
Gadfly petrels Pterodroma spp. are among the most threatened bird taxa. Conservation interventions have been successfully developed and applied for some gadfly petrel species, but a substantial gap remains in conservation science for this group in the tropical Pacific Ocean. The Vanuatu Petrel Pterodroma [cervicalis] occulta is an ideal exemplar to develop a pipeline for conservation science in tropical Pacific gadfly petrels as it is subject to many of the challenges facing other gadfly petrel taxa in the region. We review over 40 pelagic Vanuatu Petrel records and five research expeditions to the only known colony on the island of Vanua Lava, Vanuatu. These records provide a baseline from which to recommend conservation research actions for the taxon. The population status, taxonomy, distribution, and threat profile of the taxon are all poorly known, and these areas are high priorities for future research.
The unsteady hydrodynamic drag exerted on an oscillating sphere near a planar wall is addressed experimentally, theoretically and numerically. The experiments are performed by using colloidal-probe atomic force microscopy in thermal noise mode. The resonance frequencies and quality factors are extracted from the measurement of the power spectrum density of the probe oscillation for a broad range of gap distances and Womersley numbers. The shift in the resonance frequency of the colloidal probe as the probe goes close to a solid wall infers the wall-induced variations of the effective mass of the probe. Interestingly, a crossover from a positive to a negative shift is observed as the Womersley number increases. In order to rationalize the results, the confined unsteady Stokes equation is solved numerically using a finite-element method, as well as asymptotic calculations. The in-phase and out-of-phase terms of the hydrodynamic drag acting on the sphere are obtained and agree well with the experimental results. All together, the experimental, theoretical and numerical results show that the hydrodynamic force felt by an immersed sphere oscillating near a wall is highly dependent on the Womersley number.
This study aimed to determine which social network, demographic, and health-indicator variables were able to predict the development of high nutrition risk in Canadian adults at midlife and beyond, using data from the Canadian Longitudinal Study on Aging. Multivariable binomial logistic regression was used to examine the predictors of the development of high nutrition risk at follow-up, 3 years after baseline. At baseline, 35.0 per cent of participants were at high nutrition risk and 42.2 per cent were at high risk at follow-up. Lower levels of social support, lower social participation, depression, and poor self-rated healthy aging were associated with the development of high nutrition risk at follow-up. Individuals showing these factors should be screened proactively for nutrition risk.
In this paper, we consider absorbing Markov chains $X_n$ admitting a quasi-stationary measure $\mu $ on M where the transition kernel ${\mathcal P}$ admits an eigenfunction $0\leq \eta \in L^1(M,\mu )$. We find conditions on the transition densities of ${\mathcal P}$ with respect to $\mu $ which ensure that $\eta (x) \mu (\mathrm {d} x)$ is a quasi-ergodic measure for $X_n$ and that the Yaglom limit converges to the quasi-stationary measure $\mu $-almost surely. We apply this result to the random logistic map $X_{n+1} = \omega _n X_n (1-X_n)$ absorbed at ${\mathbb R} \setminus [0,1],$ where $\omega _n$ is an independent and identically distributed sequence of random variables uniformly distributed in $[a,b],$ for $1\leq a <4$ and $b>4.$
The roll waves in open-channel flow on steep slopes can strike an obstacle with great force. We conducted two-dimensional shallow-water simulations to study the impact force of the waves against structures of various shapes and orientations. The focus is on the front runner of a wave packet developed from spatial instability. The numerical results include the stand-off distance of the bow shock wave, the front face's run-up height and the wave force on the obstacle. The strength of the impact depends on the Froude number of the undisturbed flow and the obstacle's distance from the local disturbance but not much on the form of the perturbation that initiates the instability. The wave force could reach a peak of more than an order of magnitude greater than the force on the structure without the roll waves. However, an obstacle with a sharp and pointy front can deflect the incident waves, significantly reducing the impact force.
Knowing how people perceive and relate to the environment is invaluable to conservation efforts. The mechanisms that drive conservation initiatives are social in nature, and it must be acknowledged that conservation is as much about people as it is the environment and non-human species. This research explored how local communities living on the border of Gunung-Gede Pangrango National Park in West Java, Indonesia perceive the natural environment and the wildlife with which they share the forest. More specifically, the goal was to determine the depth of their knowledge about Javan gibbons (Hylobates moloch) and the threats they face in the wild. Face-to-face, semi-structured interviews were conducted with over 100 people during the months of June through August 2016. Interviews revealed an unexpected narrative. Local people have limited knowledge and information with regard to the forest and its inhabitants. Responses varied between how important people thought protecting the forest was and how crucial the need to expand agriculture is for their personal livelihoods. People also expressed a desire to be more involved in local conservation initiatives. Support from local governments and community engagement is crucial to ensure the success of conservation programmes for Javan gibbons in West Java.
The complex structural canopy of tropical forests is extremely important for the survival and continued presence of arboreal primates. The destruction and degradation of tropical rainforest on the Indonesian island of Sumatra is causing significant declines in the endemic gibbon species residing in these shrinking habitats. This chapter compares recent density estimates of the lar gibbon (Hylobates lar) and the siamang (Symphalangus syndactylus) in a historically logged area of lowland forest, Sikundur, north Sumatra, to range-wide densities of both species and the ecologically similar agile gibbon (Hylobates agilis) across the island. Density estimates for Sumatran gibbon species are largely influenced by altitude and habitat preference. Siamang densities in Sikundur were similar to previously obtained range-wide densities, whereas lar gibbon densities were lower than their reported natural density range. Sikundur’s degraded forest, consisting of reduced tree heights and low tree connectivity, has potentially impeded the ability of the lar gibbon to attain higher densities. However, the presence of these small apes in this degraded lowland forest, albeit at lower densities, demonstrates that these areas can still be important habitats for gibbons, and emphasises the importance of ongoing regeneration of previously degraded forest for the future survival of these species.
In this chapter, we study the economic issues of fresh data trading markets, where the data freshness is captured by Age-of-Information (AoI). In our model, a destination user requests, and pays for, fresh data updates from a source provider. In this work, the destination incurs an age-related cost, modeled as a general increasing function of the AoI. To understand economic viability and profitability of fresh data markets, we consider a pricing mechanism to maximize the source’s profit, while the destination chooses a data update schedule to trade off its payments to the source and its age-related cost. The problem is exacerbated when the source has incomplete information regarding the destination’s age-related cost, which requires one to exploit (economic) mechanism design to induce the truthful information. This chapter attempts to build such a fresh data trading framework that centers around the following two key questions: (a) How should a source choose the pricing scheme to maximize its profit in a fresh data market under complete market information? (b) Under incomplete information, how should a source design an optimal mechanism to maximize its profit while ensuring the destination’s truthful report of its age-related cost information?
Reward processing has been proposed to underpin the atypical social feature of autism spectrum disorder (ASD). However, previous neuroimaging studies have yielded inconsistent results regarding the specificity of atypicalities for social reward processing in ASD.
Aims
Utilising a large sample, we aimed to assess reward processing in response to reward type (social, monetary) and reward phase (anticipation, delivery) in ASD.
Method
Functional magnetic resonance imaging during social and monetary reward anticipation and delivery was performed in 212 individuals with ASD (7.6–30.6 years of age) and 181 typically developing participants (7.6–30.8 years of age).
Results
Across social and monetary reward anticipation, whole-brain analyses showed hypoactivation of the right ventral striatum in participants with ASD compared with typically developing participants. Further, region of interest analysis across both reward types yielded ASD-related hypoactivation in both the left and right ventral striatum. Across delivery of social and monetary reward, hyperactivation of the ventral striatum in individuals with ASD did not survive correction for multiple comparisons. Dimensional analyses of autism and attention-deficit hyperactivity disorder (ADHD) scores were not significant. In categorical analyses, post hoc comparisons showed that ASD effects were most pronounced in participants with ASD without co-occurring ADHD.
Conclusions
Our results do not support current theories linking atypical social interaction in ASD to specific alterations in social reward processing. Instead, they point towards a generalised hypoactivity of ventral striatum in ASD during anticipation of both social and monetary rewards. We suggest this indicates attenuated reward seeking in ASD independent of social content and that elevated ADHD symptoms may attenuate altered reward seeking in ASD.
This paper presents a detailed analysis of the flows induced in a long two-dimensional cavity heated from below in the presence of streaming due to ultrasound acoustic waves emitted by a source. The problem is tackled by using performing spectral element codes, allowing continuation of steady solutions, bifurcation points and periodic cycles. For a given dimensionless source size, the governing parameters are the acoustic streaming parameter $A$ which modulates the acoustic force generating the Eckart streaming and the Rayleigh number ${\textit {Ra}}$ which quantifies the buoyant force responsible for the convection. The streaming flow, which goes to the right along the horizontal axis and returns along the lower and upper boundaries, influences the instability thresholds, which are first strongly stabilized above the pure Rayleigh–Bénard threshold ${\textit {Ra}}_0$ when $A$ is increased, before a destabilization to reach the pure streaming threshold $A_c$ at ${\textit {Ra}}=0$. The steady multi-roll convective flow generated without streaming is replaced by periodic waves when $A$ is increased, forward waves for moderate $A$ and backward waves for large $A$. The transition between these waves induces a specific dynamics involving steady flows, which has been elucidated. The waves also eventually disappear for a sufficient increase of the Rayleigh number, replaced by steady multi-roll flows hardly influenced by the streaming flow. A very rich dynamics is thus observed with the competition between the waves and the steady flows.
Loneliness, a negative emotion stemming from the perception of unmet social needs, is a major public health concern. Current interventions often target social domains but produce small effects and are not as effective as established emotion regulation (ER)-based interventions for general psychological distress (i.e., depression/anxiety). Given that loneliness and distress are types of negative affect, we aimed to compare them within an ER framework by examining the amount of variance ER strategies accounted for in loneliness versus distress, and comparing the ER strategy profiles characterising them. Participants (N = 582, Mage = 22.31, 77.66% female) completed self-report measures of loneliness, distress, and use of 12 cognitive (e.g., cognitive reappraisal) or behavioural (e.g., expressive suppression) ER strategies. Regression analyses revealed that ER explained comparable variance in these constructs. Latent profile analysis identified seven profiles differing in ER patterns, with no distinct loneliness or distress profile identified. Rather, similar patterns of ER characterised these two constructs, involving the greater use of generally maladaptive strategies and the lesser use of generally adaptive strategies. However, loneliness was additionally characterised by less use of strategies involving social connection/expression. Overall, our study supports the utility of ER for understanding loneliness. Established ER-based frameworks/interventions for distress may have transdiagnostic utility in targeting loneliness.
from
Part II
-
Wireless Networks for Machine Learning
Edited by
Yonina C. Eldar, Weizmann Institute of Science, Israel,Andrea Goldsmith, Princeton University, New Jersey,Deniz Gündüz, Imperial College of Science, Technology and Medicine, London,H. Vincent Poor, Princeton University, New Jersey